Lecture 11: Descriptive Specifications
(Continued)

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today’s Lecture

e Finish RAISE example
e Examine APP Language
e Examine Inscape Interface Language

February 22, 2000 © Kenneth M. Anderson, 2000

RAISE

Rigorous Approach to Industrial Software Engineering

e A Method and a Language
e Specification Language: RSL
» Specifications Refined in Levels

— Associated consistency proof obligations
* Proofs of Properties Aided by Tools

February 22, 2000 © Kenneth M. Anderson, 2000 3

Are These Theorems of POTS?

active_calls(L,) =L; A active_calls(L,) =L,
A Li#L,

OvL,L,:Lne ®
place_call(L,, L,)
post line_status(L,) = Off_Hook

February 22, 2000 © Kenneth M. Anderson, 2000

Practical Logic Specifications

e Most Software Faults Occur at Interfaces
— Typically, function boundaries
» Assertions Can Specify Interface Properties
— Preconditions to calling a function
— Postconditions of returning from a function
» Guaranteeing Logical Properties
— Dynamic (run-time) assertion checking
— Static (compile-time) theorem proving

Self-Checking Programs
An alternative to program proving

e Dynamic Analysis of Logic-Based
Specifications

e Examples

— Anna (ANNotated Ada)
— APP (Annotation PreProcessor for C)

e Requires Sample Inputs for Analysis

February 22, 2000 © Kenneth M. Anderson, 2000 February 22, 2000 © Kenneth M. Anderson, 2000
APP Assertion Language APP Specification
e Annotations as Structured Comments void print_warning(code, line, file)
* * int code;
/@"'@/ int line;
e Basic Constructs char* file;
assume (precondition) @

promise (postcondition)

February 22, 2000 © Kenneth M. Anderson, 2000

assume warnings_on;
promise warnings_on;

@'/
[}

February 22, 2000 © Kenneth M. Anderson, 2000

APP Assertion Language

e Quantification

some (existential quantifier)
all (universal quantifier)

February 22, 2000 © Kenneth M. Anderson, 2000

APP Specification

#define BUFFSIZE 80
char bufferBUFFSIZE];

void fill_and_truncate()

'@
promise some (inti = 0; i < BUFFSIZE; i++) buffer[i] =="\0";
@/
{..}
February 22, 2000 © Kenneth M. Anderson, 2000

APP Assertion Language

* Additional Constraints
return (constraint on return value)
assert (constraint on intermediate state)

February 22, 2000 © Kenneth M. Anderson, 2000

11

APP Specification

int square_root(x)
int x;

'@
assume x >=0;
return y where y >=0;
return y where y*y <= x && x < (y+1)*(y+1);

@
{0}

February 22, 2000 © Kenneth M. Anderson, 2000

APP Specification

int swap(x,y)
int *x,*y;

'@
assume x && y && x I=y;
promise *x == in *y && *y ==in *x;

@/
{ "x="%+7;
"y =Xy,
[*@ assert *y == in *x; @"/
=%y}
February 22, 2000 © Kenneth M. Anderson, 2000 13

APP Assertion Language

e Additional Constraints

return (constraint on return value)

assert (constraint on intermediate state)

February 22, 2000 © Kenneth M. Anderson, 2000 14

APP Specification of place_call()

February 22, 2000 © Kenneth M. Anderson, 2000 15

APP Specification of place_call()

#define LINE_MAX 128
typedef long line;
line active_calls[LINE_MAX];

int place_call(L1, L2)
L1, L2 : line;

'@ ... @* [* precondition and postcondition assertions */

{0} /* C implementation code and state assertions */

February 22, 2000 © Kenneth M. Anderson, 2000 16

APP Specification of place_call()
r@

2: assume line_status(L1) == off_hook

&& active_calls[L1] ==

&& !some(line L3 = 1; L3 < LINE_MAX; L3++)

active_calls[L3] == L1;
1: return S where IS
|| (L1!= L2 && active_calls[L1] == L2
&& lin some(line L3 = 1; L3 < LINE_MAX; L3++)
active_calls[L3] == L2);
@’/

February 22, 2000 © Kenneth M. Anderson, 2000 17

Running with Self-Checking

e Sample Diagnostic Output
promise violated: file pc.c, line 11, function place_call
* Checking-level Is Set at Runtime
— No need for recompilation
O Run at level 1
A If violations, re-run at level 2 for more info

e Violation Actions Can Be Used to
Customize and Enhance Diagnostics

February 22, 2000 © Kenneth M. Anderson, 2000 18

Logic-based Construction

* Logic Used to “Build” Rather Than “Prove”
e Functions Specified Independently

e Condition Satisfaction Connects Functions

— Preconditions and postconditions treated like
hardware input and output pins

— Postconditions satisfy some preconditions

— Preconditions depend on some postconditions

February 22, 2000 © Kenneth M. Anderson, 2000 19

Inscape Interface Language

* Base Terms
— Function and parameter names

— Predicates
* Preconditions and Postconditions
» Special Postcondition: Obligation

— Postcondition that must eventually be satisfied

February 22, 2000 © Kenneth M. Anderson, 2000 20

Graphical Notation

» Routines are presented as rectangles

— each condition is numbered
* preconditions are placed at the top
* postconditions are placed at the bottom
* obligations are placed on the right
— conditions which “match” are connected

» unmatched conditions are propagated to higher level
entities

February 22, 2000 © Kenneth M. Anderson, 2000 21

Inscape Specification

OpenFile (F, &FP)

preconditions:
LegalFileName(F) 01
FileExists(F) 02
postconditions:
LegalFileName(F) 03
FileExists(F) 04
ValidFilePointer(FP) 05
FileOpen(FP) 06
obligations:
FileClosed(FP) 07
February 22, 2000 © Kenneth M. Anderson, 2000

22

Example of Graphical Notation

o) ©

OPENFILE @

039 ©9 09 ©9

February 22, 2000 © Kenneth M. Anderson, 2000 23

Inscape Specification

CloseFile (&FP)

preconditions:
ValidFilePointer(FP) C1
FileOpen(FP) C2
postconditions:
not(ValidFilePointer(out(FP))) C3
FileClosed(in(FP)) C4
obligations:

February 22, 2000 © Kenneth M. Anderson, 2000

24

Example of Graphical Notation

) ©

OPENFILE @

©3 ©9 ©9 ©9

€ ©

CLOSEFILE

© ©

© Kenneth M. Anderson, 2000

February 22, 2000

25

Inscape Specification

ReadRecord (FP, R, &L,&Buffer)

preconditions:
ValidFilePointer(FP) R1
FileOpen(FP) R2
LegalRecordNumber(R) R3
RecordExists(R) R4
RecordReadable(R) R5
RecordConsistent(R) R6

February 22, 2000 © Kenneth M. Anderson, 2000 26

Inscape Specification

ReadRecord (FP, R, &L,&Buffer)

postconditions:
ValidFilePointer(FP) R7
FileOpen(FP) R8
LegalRecordNumber(R) R9
RecordExists(R) R10
RecordReadable(R) R11
RecordConsistent(R) R12
Allocated(*Buffer) R13
0 <= L <= Allocated(*Buffer) R14
RecordIn(*Buffer) R15

February 22, 2000 © Kenneth M. Anderson, 2000

27

Inscape Specification

ReadRecord (FP, R, &L,&Buffer)
obligations:
Deallocated(*Buffer) R16

February 22, 2000 © Kenneth M. Anderson, 2000 28

Inscape Specification

ObtainRecord (FP, R, &L,&Buffer)

preconditions:
LegalFileName(F) 01
FileExists(F) 02
LegalRecordNumber(R) R3
RecordExists(R) R4
RecordReadable(R) R5
RecordConsistent(R) R6
February 22, 2000 © Kenneth M. Anderson, 2000

29

Inscape Specification

ObtainRecord (FP, R, &L,&Buffer)

postconditions:
LegalFileName(F) 03
FileExists(F) 04
LegalRecordNumber(R) R9
RecordExists(R) R10
RecordReadable(R) R11
RecordConsistent(R) R12
Allocated(*Buffer) R13
0 <=L <= Allocated(*Buffer) R14
RecordIn(*Buffer) R15
February 22, 2000 © Kenneth M. Anderson, 2000

30

Inscape Specification

ObtainRecord (FP, R, &L,&Buffer)
obligations:
Deallocated(*Buffer) R16

February 22, 2000 © Kenneth M. Anderson, 2000

31

