Lecture 10: Descriptive Specifications

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today s Lecture

\# Introduce Descriptive Specifications
E-R Diagrams (Semi-Formal)
Axiomatic
Algebraic
-Tour of the RAISE system
¥ Developed in Denmark
$¥$ Sold to European Manufacturing companies
$¥$ Using RAISE to create these types of specifications
-Has a full tool suite

Formalisms Provide Preciseness

\# Use of Mathematical Formalisms
-Properties are specified precisely by building on top of the precise mathematical syntax and semantics of the underlying formalisms
¥ Mathematical Foundations
-Predicate logic, set theory, abstract algebra

Entity-Relationship Diagrams

$¥$ A semi-formal notation for describing the structure and relationships of data
-Akin to how Data Flow Diagrams are a semi-formal notation for describing the operations that access and manipulate data
¥ Problems
-Syntax and Semantics are not precisely defined
—Lack of Expressive power
$¥$ requires the use of natural language annotations

Example ER Diagram

(taken from textbook page 200)

ER Diagrams and UML

$¥$ ER Diagrams can be seen as precursors to UML s Class Diagrams
¥ Differences
-operations and inheritance are added
$¥$ Advantages
-ER notation was never standardized, UML s class diagrams provide a standard notation $¥$ however, remember that they are both semi-formal

Logic Specifications

¥ Vocabulary of Logical Expressions
-Variables, constants, predicates, functions

- Connectives: and (\wedge), or (\vee), not (\neg), implies (\Rightarrow), equivalent (\equiv) -Quantifiers: exists (\exists), for all (\forall)
$¥$ Combined with Vocabulary of Application
-Example: set operators (\in, \cup, \cap,)
Example: ADT operators (Push, IsFull,)

Logic Specifications

\# Examples
$-x>y$ and $y>z$ implies $x>z$
-for all x (exists $y(y=x+z)$)
$¥$ Additional Notes
-Variables are either free or bound
$¥$ A formula with all variables bound is called closed; closed formulas are always either true or false
-Expressions are theories in the logic
$-\mathrm{V} \& \mathrm{~V}$ amounts to theorem proving

Creating Logic Specifications

$¥$ Helper Predicates and Functions
-Define the base properties of interest
$¥$ Used as a domain-specific vocabulary
-Modularize the specification
$¥$ e.g., defined in one spec; used in another
¥ Examples

- height(bob) $=72$; tall(bob)
for p: person (height(p)>60 implies tall(p))

Logic Specification Techniques

$¥$ Invariants and Assertions

- Logic specs are used to assert properties of portions of code as well
-For instance, to assert something that is always true of a routine or to record the assumptions about variables passed to a procedure

$$
\{\mathrm{n}>0\}
$$

procedure reverse (a: in out int_array; n : in int) $\{$ for all $\mathrm{i}(1<=\mathrm{i}<=\mathrm{n})$ implies $(\mathrm{a}(\mathrm{i})=$ old_a(n-i+1$))\}$

```
# A property is defined
    {Pre(i1, i2, i3, )}
P
{Post(o1, o2, o3, , i1,
    i2, i3, >}
# Example
    {exists z(i1 = z* i 2)}
P
{ol = i1/i2}
```


Logic Specification Techniques

$¥$ Preconditions and	$¥$A property is defined Postconditions -Textbook gives lots of
examples on 204-205	Pre $\mathrm{i} 1, \mathrm{i} 2, \mathrm{i} 3)\}$,
Assume $<\mathrm{i} 1, \mathrm{i} 2, \mathrm{i} 3,>$	$\{\operatorname{Post}(\mathrm{o} 1, \mathrm{o} 2, \mathrm{o} 3,, \mathrm{i} 1$,
are input values	$\mathrm{i} 2, \mathrm{i} 3,>\}$
Assume $<\mathrm{o} 1, \mathrm{o} 2, \mathrm{o},>$	$¥$ Example
are output values	$\{$ exists $\mathrm{z}(\mathrm{i} 1=\mathrm{z} * \mathrm{i} 2)\}$
	P
	$\{\mathrm{o} 1=\mathrm{i} 1 / \mathrm{i} 2\}$

Algebraic Specifications

$¥$ Make use of heterogeneous algebra

- a collection of different sets on which several operations are defined
-Traditional algebras are homogeneous, one set and a several operations; e.g. integers
-Heterogeneous algebras contain multiple sets
$¥$ e.g. length (ken) $=3$
$¥$ Here we have the set of strings and integers with one operation length defined

Background Information

¥ In RAISE, they make use of a funny notion of the domain and range of a function
$¥$ Each function consists of a set of tuples. The domain is the set of elements that make up the first element of each tuple; the range is the set of elements that make up the second set of each tuple

RAISE

Rigorous Approach to Industrial Software Engineering
$¥$ A Method and a Language
$¥$ Specification Language: RSL
¥ Specifications Refined in Levels
Associated consistency proof obligations
$¥$ Proofs of Properties Aided by Tools

Example

RAISE Specification of POTS*

* Plain Old Telephone Service

RAISE Specification of POTS

scheme POTS = class
type
value
variable

RAISE Specification of POTS

scheme POTS =
class
type Line,

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status $=$ Line $\overrightarrow{\mathrm{m}}\{$ On_Hook, Off_Hook $\}$,

RAISE Specification of POTS

scheme POTS = class
type Line,
Status $=$ Line $\overrightarrow{\mathrm{m}}\{$ On_Hook, Off_Hook $\}$,
Calls $=$ Line \vec{m} Line

RAISE Specification of POTS

scheme POTS = class
type Line,
Status $=$ Line $\overrightarrow{\mathrm{m}}\{$ On_Hook, Off_Hook $\}$,
Calls $=$ Line $\overrightarrow{\mathrm{m}}$ Line
value

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status $=$ Line $\overrightarrow{\mathrm{m}}\{$ On_Hook, Off_Hook $\}$,
Calls $=$ Line \vec{m} Line
value go_off_hook: Line \rightarrow Unit,

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status $=$ Line $\vec{m}\{$ On_Hook, Off_Hook $\}$,
Calls $=$ Line $\overrightarrow{\mathrm{m}}$ Line
value go_off_hook: Line \rightarrow Unit, go_on_hook : Line \rightarrow Unit,

RAISE Specification of POTS

```
scheme POTS =
    class
        type Line,
            Status = Line \vec{m}{On_Hook,Off_Hook},
            Calls = Line m
            value go_off_hook: Line }->\mathrm{ Unit,
            go_on_hook: Line }->\mathrm{ Unit,
            place_call: Line }\times\mathrm{ Line }->\mathrm{ Bool,
```


RAISE Specification of POTS

scheme POTS = class
type Line,
Status $=$ Line $\overrightarrow{\mathrm{m}}\{$ On_Hook, Off_Hook $\}$,
Calls $=$ Line \vec{m} Line
value $\quad \begin{aligned} & \text { go_off_hook : Line } \rightarrow \text { Unit, } \\ & \text { go on hook : Line } \rightarrow \text { Unit, }\end{aligned}$
go_on_hook : Line \rightarrow Unit,
place_call : Line \times Line \rightarrow Bool,
end_call : Line \rightarrow Unit

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status $=$ Line $\vec{m}\{$ On_Hook, Off_Hook $\}$, Calls $=$ Line \vec{m} Line
value go_off_hook: Line \rightarrow Unit, go_on_hook : Line \rightarrow Unit,
place_call : Line \times Line \rightarrow Bool, end_call : Line \rightarrow Unit
variable

RAISE Specification of POTS

 axiom
RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L)
go_on_hook(L)
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$
end_call(L)

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L)

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status = line_status‘ [L |-> Off_Hook],

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status‘ $\quad[\mathrm{L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ [L |-> On_Hook],

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status = line_status‘ [L |-> Off_Hook],
go_on_hook(L)

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status ${ }^{6} \quad[\mathrm{~L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ [L|-> On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status = line_status‘ [L |->
Off_Hook],
go_on_hook(L) post line_status = line_status‘ $\quad[\mathrm{L} \mid->$ On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S
post $S \Rightarrow L_{1} \neq L_{2}$

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$

go_off_hook(L) post line_status $=$ line_status‘ $\quad[\mathrm{L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ [L |-> On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S

$$
\text { post } S \Rightarrow L_{1} \neq \mathrm{L}_{2} \wedge \text { active_calls }=\text { active_calls }{ }^{6} \quad\left[\mathrm{~L}_{1} \mid->\mathrm{L}_{2}\right]
$$

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status‘ $\quad[\mathrm{L} \mid->$ Off_Hook],
go_on_hook(L) post line_status $=$ line_status ${ }^{6} \quad[\mathrm{~L} \mid->$ On_Hook],
place_call($\left.\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S
post $S \Rightarrow L_{1} \neq L_{2} \wedge$ active_calls $=$ active_calls ${ }^{\star} \quad\left[L_{1} \mid->L_{2}\right]$
$\wedge \mathrm{L}_{2} \notin$ dom active_calls‘

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status \quad [L |-> Off_Hook],
go_on_hook(L) post line_status = line_status' $\quad[\mathrm{L} \mid->$ On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S
post $S \Rightarrow L_{1} \neq L_{2} \wedge$ active_calls $=$ active_calls ${ }^{6} \quad\left[L_{1} \mid->L_{2}\right]$
$\wedge \mathrm{L}_{2} \notin$ dom active_calls‘$\wedge \mathrm{L}_{2} \notin$ rng active_calls ${ }^{\star}$

RAISE Specification of POTS

```
axiom forall L, L, L, L2 : Line #
    go_off_hook(L) post line_status = line_status` [ L |->
    Off_Hook ],
    go_on_hook(L) post line_status = line_status` [ L |->
    On_Hook ],
    place_call( }\mp@subsup{L}{1}{},\mp@subsup{L}{2}{})\mathrm{ as S
        post S }=>\mp@subsup{L}{1}{}\not=\mp@subsup{L}{2}{}\wedge\mathrm{ active_calls = active_calls` [ L L 
        \wedge L L }\not\in\mathrm{ dom active_calls` ^ L L 
        pre
```


RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status‘ $\quad[\mathrm{L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ $\quad[\mathrm{L} \mid->$ On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S
post $S \Rightarrow L_{1} \neq \mathrm{L}_{2} \wedge$ active_calls $=$ active_calls ${ }^{6} \quad\left[\mathrm{~L}_{1} \mid->\mathrm{L}_{2}\right]$ $\wedge \mathrm{L}_{2} \notin$ dom active_calls ${ }^{\star} \wedge \mathrm{L}_{2} \notin$ rng active_calls ${ }^{\star}$
pre line_status $\left(\mathrm{L}_{1}\right)=$ Off_Hook

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status ${ }^{6} \quad[\mathrm{~L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ [L |->
On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S post $S \Rightarrow L_{1} \neq L_{2} \wedge$ active_calls $=$ active_calls ${ }^{\star} \quad\left[L_{1} \mid->L_{2}\right]$ $\wedge \mathrm{L}_{2} \notin$ dom active_calls‘$\wedge \mathrm{L}_{2} \notin$ rng active_calls‘ pre line_status $\left(\mathrm{L}_{1}\right)=$ Off_Hook

February 17, 2000
$\wedge \mathrm{L}_{1} \notin \underset{\text { Kenn eth M. Anderson, } 2000}{\text { dom active_cals }}$

RAISE Specification of POTS

axiom forall $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$: Line $¥$
go_off_hook(L) post line_status $=$ line_status ${ }^{6} \quad[\mathrm{~L} \mid->$ Off_Hook],
go_on_hook(L) post line_status = line_status‘ [L |->
On_Hook],
place_call $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ as S
post $S \Rightarrow L_{1} \neq L_{2} \wedge$ active_calls $=$ active_calls ${ }^{6} \quad\left[L_{1} \mid->L_{2}\right]$
$\wedge \mathrm{L}_{2} \notin$ dom active_calls ${ }^{\star} \wedge \mathrm{L}_{2} \notin$ rng active_calls ${ }^{\star}$
pre line_status $\left(\mathrm{L}_{1}\right)=$ Off_Hook
February $17,2000 \wedge \mathrm{~L}_{1} \notin \underset{\text { Kenn eth M. Anderson, 2000 }}{\text { dom active_calls }} \wedge \mathrm{L}_{1} \notin$ rng active_calls,

RAISE Specification of POTS

RAISE Specification of POTS

end_call(L)
post

RAISE Specification of POTS

end_call(L)

RAISE Specification of POTS

end_call(L)
post if $\mathrm{L} \in$ dom active_calls‘
then
else
end

RAISE Specification of POTS

```
end_call(L)
    post if L }\in\mathrm{ dom active_calls`
        then active_calls = active_calls` \{L }
        else
    end
```


RAISE Specification of POTS

```
end_call(L)
    post if L\in dom active_calls`
        then active_calls = active_calls`\{ L }
        else \exists L L
            active_calls` (L3)=L
        end
end_call(L)
post if \(\mathrm{L} \in\) dom active_calls‘
then active_calls \(=\) active_calls \({ }^{\text {s }} \backslash\{\mathrm{L}\}\)
active_calls \({ }^{〔}\left(L_{3}\right)=\) L
end
```


RAISE Specification of POTS

```
end_call(L)
```

 post if \(\mathrm{L} \in\) dom active_calls‘
 then active_calls \(=\) active_calls \(^{‘} \backslash\{\mathrm{~L}\}\)
 else \(\exists \mathrm{L}_{3}\) : Line \(¥\)
 end

RAISE Specification of POTS

end_call(L)
post if $\mathrm{L} \in$ dom active_calls‘
then active_calls $=$ active_calls $^{`} \backslash\{\mathrm{~L}\}$
else $\exists \mathrm{L}_{3}$: Line $¥$
active_calls ${ }^{〔}\left(\mathrm{~L}_{3}\right)=\mathrm{L} \wedge$
active_calls $=$ active_calls ${ }^{\text {‘ }} \backslash\left\{\mathrm{L}_{3}\right\}$
end

RAISE Specification of POTS

```
```

end_call(L)

```
```

end_call(L)
post if L \in dom active_calls` post if L \in dom active_calls`
then active_calls = active_calls` \{ L } then active_calls = active_calls` \{ L }
else }\exists\mp@subsup{L}{3}{}\mathrm{ : Line \#
else }\exists\mp@subsup{L}{3}{}\mathrm{ : Line \#
active_calls` (L3})=L active_calls` (L3})=L
active_calls = active_calls`\{{\mp@subsup{L}{3}{}} active_calls = active_calls`\{{\mp@subsup{L}{3}{}}
end
end
pre

```
```

 pre
    ```
```


RAISE Specification of POTS

end_call(L)
post if $\mathrm{L} \in$ dom active_calls،
then active_calls $=$ active_calls‘ $\backslash\{\mathrm{L}\}$
else $\exists \mathrm{L}_{3}$: Line $¥$
active_calls‘ $\left(\mathrm{L}_{3}\right)=\mathrm{L} \wedge$
active_calls $=$ active_calls‘ $\backslash\left\{\mathrm{L}_{3}\right\}$
end
pre $\mathrm{L} \in$ dom active_calls $\vee \mathrm{L} \in$ rng active_calls

RAISE Specification of POTS

```
end_call(L)
```

 post if \(\mathrm{L} \in\) dom active_calls‘
 then active_calls \(=\) active_calls \(^{‘} \backslash\{\mathrm{~L}\}\)
 else \(\exists \mathrm{L}_{3}\) : Line \(¥\)
 active_calls \({ }^{〔}\left(\mathrm{~L}_{3}\right)=\mathrm{L} \wedge\)
 active_calls \(=\) active_calls \({ }^{‘} \backslash\left\{L_{3}\right\}\)
 end
 pre \(\mathrm{L} \in\) dom active_calls

RAISE Specification of POTS

end_call(L)
post if $\mathrm{L} \in$ dom active_calls‘
then active_calls $=$ active_calls $^{‘} \backslash\{\mathrm{~L}\}$
else $\exists \mathrm{L}_{3}$: Line \neq
active_calls ${ }^{〔}\left(\mathrm{~L}_{3}\right)=\mathrm{L} \wedge$
active_calls $=$ active_calls ${ }^{‘} \backslash\left\{\mathrm{~L}_{3}\right\}$
end
pre $\mathrm{L} \in$ dom active_calls $\vee \mathrm{L} \in$ rng active_calls end

