Today's Lecture • Introduce the Petri Net Formalism Lecture 8: Petri-Nets - Present several examples Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 2000 2 February 10, 2000 © Kenneth M. Anderson, 2000 Petri Nets **Graphical Representation** • Formal Definition ln₄ In, $N = \{P, T, A, M_0\}, \text{ where }$ P is a finite set of places T is a finite set of *transitions* Sem A is a finite set of arcs (arrows) M_{θ} is the *initial marking* of N CR₁ CR, **Out**₄ Out, 3 February 10, 2000 © Kenneth M. Anderson, 2000 February 10, 2000 © Kenneth M. Anderson, 2000

Graphical Representation Petri Nets • Intuitive Meaning ln, In, - A place holds tokens - A transition represents *activity* arc token – An arc connects a place and a transition place. - A marking is an arrangement of tokens in Sem transition places, representing state CR₁ CR₂ **Out**₄ Out₂ - An initial marking represents an initial state

February 10, 2000

© Kenneth M. Anderson, 2000

10

Execution Model

© Kenneth M. Anderson, 2000

- Input and Output Places
 - Place P is an *input place* for transition T if there is an arc from P to T
 - Place P is an *output place* for transition T if there is an arc from T to P
- Enabled Transition
 - A transition is *enabled* if there is at least one token at each of its input places

Petri Net Semaphore

February 10, 2000

11

Enabled Transitions

Execution Model

• Firing a Transition

– An enabled transition is nondeterministically selected and *fired* by removing one token from each of its input places and depositing one token at each of its output places

• Firing Sequence

- A firing sequence is a sequence $\langle t_0, t_1, \dots, t_n \rangle$ such that t_0 is enabled and fired in M_0 , t_1 is enabled and fired in M_1 , etc. February 10, 2000

14

Ο

© Kenneth M. Anderson, 2000

CR₁

Out₄

February 10, 2000

Sem

CR,

Out,

© Kenneth M. Anderson, 2000

Enabled Transition

Breaking the Semaphore

- Lets look at the semaphore example again and see how a change to the initial marking will change the semantics of the Petri Net
 - In particular, we will break the semantics of the semaphore by adding *one* token

