
Lecture 7
Finite State Machines

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

February 8, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Explore Finite State Machine issues

• Present a FSM-like language called SDL

• Discuss Homework 2

February 8, 2000 © Kenneth M. Anderson, 2000 3

Finite State Machines (FSMs)

• Formal Definition
M = {Q,I,δ}, where

Q is a finite set of states

I is a finite set of inputs
δ is a transition function

δ : Q × I → Q

δ can be a partial function

February 8, 2000 © Kenneth M. Anderson, 2000 4

Finite State Machines (FSMs)

• Graph Representation
– Nodes represent states

– Arcs are directed and labeled with elements of I

– Arc labeled i goes from state q1 to state q2

 iff δ(q1,i) = q2

February 8, 2000 © Kenneth M. Anderson, 2000 5

An Example

• Q = { q1, q2, q3}

• I = {i1, i2, i3, i4}

• δ = i1 i2 i3 i4

q1 q2

q2 q3 q1

q3 q3 q1

q2

q1

q3

i1

i4

i2
i2

i3

February 8, 2000 © Kenneth M. Anderson, 2000 6

Finite State Machines (FSMs)

• Execution Model
– Machine in some state
– Input causes state change according to δ

• Common Extensions
– Start states and stop states

– Output generated upon state transition
• δ : Q × I → Q × Ο

February 8, 2000 © Kenneth M. Anderson, 2000 7

• O = {o1, o2, o3, o4}

Example

q2

q1

q3

i1/o1

i2/o4

i2/o1

i3/o3
i4/o2

Stop State

Start State
February 8, 2000 © Kenneth M. Anderson, 2000 8

Advantages of FSM Model

• Simple

• Obvious graphical representation

• Easy to Build Support Tools
– Transformers

• Transform FSM Model into other representations

– Analyzers
• Will this FSM run forever? Is it possible for it to

halt? Are the state sequences infinite?

February 8, 2000 © Kenneth M. Anderson, 2000 9

Shortcomings of FSM Model

• Theoretical Limit on Computational Power
– FSM has no “memory”

– Using states as memory is inefficient
• Consider modeling a cruise control system with

states that model car speed

• 8-bit register = 28 = 256 states!

• State Space Explosion for Large Problems

February 8, 2000 © Kenneth M. Anderson, 2000 10

“No Memory” Problem

Define
Test
Case

Apply
Test
Case

D

D

A

A

We would like to apply all of the defined test cases
but a finite state machine cannot guarantee that

DN=AN

February 8, 2000 © Kenneth M. Anderson, 2000 11

Shortcomings, continued

• Inherently Synchronous
– FSM in single, global state at each time instant

• State Space Explosion for Composed FSMs
– States are multiplicative

– On next slide, imagine composing the
producer/consumer/buffer state machines into
one FSM. See the result in the textbook on page
173, Figure 5.16

February 8, 2000 © Kenneth M. Anderson, 2000 12

Producer/Consumer Example

P1 P2 C2C1

10 2

Producer Consumer

2-unit Buffer

February 8, 2000 © Kenneth M. Anderson, 2000 13

FSMs as Recognizers

q0 q2q1
<letter>

<letter>

<digit>

_

February 8, 2000 © Kenneth M. Anderson, 2000 14

Levels of Complexity

• Turing Machine
– Unbounded tape

• Linear-Bounded Automata
– Bounded tape

• Push-Down Automata
– stack

• Finite State Machines
– limited computational

power but its simple to
understand and program

• Programming Languages
– Execution Semantics

• Context Sensitive Langs.
– Language Semantics

• Context Free Grammars
– Syntax

• Regular Expressions
– Lexical Structure

February 8, 2000 © Kenneth M. Anderson, 2000 15

An FSM-Based Tool: SDL

• Used Widely for Telephony Applications

• Extended FSMs
– Modularity

– Channel

• Tools
– Analysis

– Simulation

– Code-generation
February 8, 2000 © Kenneth M. Anderson, 2000 16

Homework 2

• Use a Finite State Machine to describe the
possible state transitions for our home
security system
– Use only the notations presented in this lecture

• Retrieve the assignment from the Website
– You may turn in hardcopy in class, or send the

diagram via e-mail as a postscript or PDF
attachment

