Lecture 6 Operational Specifications

Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 2000

Today's Lecture

- Continue to discuss the Make example
 - It illustrates each of the three specification styles introduced in lecture 5
- Begin to explore Operational Specifications in more detail

February 3, 2000

© Kenneth M. Anderson, 2000

The Make Example

- Lecture 5
 - We worked on an example specifying some properties of Make
- However, Make *is* a specification language itself
 - It specifies dependencies between artifacts
 - It specifies rules for creating new artifacts
 - It specifies actions to carry out the rules

3

Make Specification Language

- Dependencies are Relational
 - Described according to desired relationships
 - Usually given in terms of multi/hyper graphs
- Rules are Declarative
 - Described according to desired properties
 - Usually given in terms of axioms or algebras
- Actions are Imperative
 - Described according to desired actions
 - Usually given in terms of an execution model

February 3, 2000

2

Hybrid Style Issues

- Consider programming languages
 - They are primarily operational
 - What about them are declarative or relational?
- Most languages will have a chief modeling style
 - Contrast statements in a program with Make's
 - S1 S2 S3... operational, do these statements in this order
 - Rules in a makefile: declarative, achieve this target
 - One style will lead you to ask different sorts of questions than with another style
 - Is there a unique way to achieve the target? Is a target feasible?

© Kenneth M. Anderson, 2000

Operational Specification

- Focuses on Control Aspects
 - Here we choose to look at control issues rather than data issues
- Examples
 - Control the flight path of an airplane
 - Control the speed of a car
- Of course, there are data aspects to these problems. However we view them more as parameters that influence the actions of the system

February 3	3, 2000
------------	---------

© Kenneth M. Anderson, 2000

10

Formalisms and Foundations

- Formalisms
 - Finite State Machines (FSMs)
 - Petri Nets
 - Statecharts used in UML
 - Communicating Sequential Processes (CSP)
 - Latter three are different attempts to add concurrency to FSMs
- Mathematical Foundations
 - Graph theory, automata theory, modal logic

Preview of Finite State Machines

• Informal Problem Description

– When turned on by the driver, a cruise-control system automatically maintains the speed of a car over varying terrain. When the brake is applied, the system must relinquish speed control until told to resume. The system must also steadily increase or decrease speed to reach a new maintenance speed when directed to do so by the driver.

11

9

February 3, 2000

Example Continued

- There are seven inputs:
 - System on/off: If on, denotes that the cruisecontrol system should maintain the car speed.
 - Engine on/off: If on, denotes that the car engine is turned on; the cruise-control system is only active if the engine is on.
 - Pulses from wheel: A pulse is sent for every revolution of the wheel.

13 February 3, 2000 © Kenneth M. Anderson, 2000 February 3, 2000 © Kenneth M. Anderson, 2000 14

In-class Example

- We will now develop a finite state machine to help formalize the problem description
- Method
 - Identify states
 - Identify transistions between states
 - Keep it simple, if it starts to get too complex, we are heading down the wrong path
- <See class video for rest of example.>

15

Example Continued

- Accelerator: Indication of how far the accelerator has been pressed. Note: The accelerator does not turn off the cruise-control system, it "pauses" the system
- Brake: On when the brake is pressed; the cruise-control system temporarily reverts to manual control if the brake is pressed.
- Increase/Decrease Speed: Increase or decrease the maintained speed; only applicable if the cruise-control system is on.
- Resume: Resume the last maintained speed; only applicable if the cruise-control system is on.