
Lecture 6
Operational Specifications

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

February 3, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Continue to discuss the Make example
– It illustrates each of the three specification

styles introduced in lecture 5

• Begin to explore Operational Specifications
in more detail

February 3, 2000 © Kenneth M. Anderson, 2000 3

The Make Example

• Lecture 5
– We worked on an example specifying some

properties of Make

• However, Make is a specification language
itself
– It specifies dependencies between artifacts

– It specifies rules for creating new artifacts

– It specifies actions to carry out the rules

February 3, 2000 © Kenneth M. Anderson, 2000 4

Make Specification Language

• Dependencies are Relational
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs

• Rules are Declarative
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Actions are Imperative
– Described according to desired actions

– Usually given in terms of an execution model

February 3, 2000 © Kenneth M. Anderson, 2000 5

More on Make

• Make is well-integrated into a Unix/C
environment
– Primitive Components are Files

– Actions are “shell commands”

– Rules are placed in a file and denote the
“specification”

• Rules make explicit the dependencies of the system
and what to do about them

February 3, 2000 © Kenneth M. Anderson, 2000 6

Example “Makefile”

T1: T2 T3 T4
 A1 A2 A3

T2: T5 T6
 A4

T3: T5 T7
 A5 A6

Target

Actions

Dependencies

Rules

February 3, 2000 © Kenneth M. Anderson, 2000 7

T1

T2 T3 T4

T5 T6 T7

… and shared dependencies!

Rules can have interdependencies

February 3, 2000 © Kenneth M. Anderson, 2000 8

Questions

• What is the concept of dependence in this
system? How is it modeled?

• Why are rules considered declarative?

February 3, 2000 © Kenneth M. Anderson, 2000 9

Hybrid Style Issues

• Consider programming languages
– They are primarily operational

• What about them are declarative or relational?

• Most languages will have a chief modeling style
– Contrast statements in a program with Make’s

• S1 S2 S3… operational, do these statements in this order

• Rules in a makefile: declarative, achieve this target

– One style will lead you to ask different sorts of
questions than with another style

• Is there a unique way to achieve the target? Is a target feasible?

February 3, 2000 © Kenneth M. Anderson, 2000 10

Operational Specification

• Focuses on Control Aspects
– Here we choose to look at control issues rather than

data issues

• Examples
– Control the flight path of an airplane

– Control the speed of a car

• Of course, there are data aspects to these
problems. However we view them more as
parameters that influence the actions of the system

February 3, 2000 © Kenneth M. Anderson, 2000 11

Formalisms and Foundations

• Formalisms
– Finite State Machines (FSMs)

– Petri Nets

– Statecharts - used in UML

– Communicating Sequential Processes (CSP)
• Latter three are different attempts to add concurrency to FSMs

• Mathematical Foundations
– Graph theory, automata theory, modal logic

February 3, 2000 © Kenneth M. Anderson, 2000 12

Preview of Finite State Machines

• Informal Problem Description
– When turned on by the driver, a cruise-control

system automatically maintains the speed of a
car over varying terrain. When the brake is
applied, the system must relinquish speed
control until told to resume. The system must
also steadily increase or decrease speed to reach
a new maintenance speed when directed to do
so by the driver.

February 3, 2000 © Kenneth M. Anderson, 2000 13

Example Continued

• There are seven inputs:
– System on/off: If on, denotes that the cruise-

control system should maintain the car speed.

– Engine on/off: If on, denotes that the car engine
is turned on; the cruise-control system is only
active if the engine is on.

– Pulses from wheel: A pulse is sent for every
revolution of the wheel.

February 3, 2000 © Kenneth M. Anderson, 2000 14

Example Continued

– Accelerator: Indication of how far the accelerator has
been pressed. Note: The accelerator does not turn off
the cruise-control system, it “pauses” the system

– Brake: On when the brake is pressed; the cruise-control
system temporarily reverts to manual control if the
brake is pressed.

– Increase/Decrease Speed: Increase or decrease the
maintained speed; only applicable if the cruise-control
system is on.

– Resume: Resume the last maintained speed; only
applicable if the cruise-control system is on.

February 3, 2000 © Kenneth M. Anderson, 2000 15

In-class Example

• We will now develop a finite state machine
to help formalize the problem description

• Method
– Identify states

– Identify transistions between states

– Keep it simple, if it starts to get too complex,
we are heading down the wrong path

• <See class video for rest of example.>

