
Lecture 5: Introduction to
Specifications

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

February 1, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Introduction to Specifications
– Present an extended example

• make

February 1, 2000 © Kenneth M. Anderson, 2000 3

Specification

• Dictionary Definitions
– specific - that pertaining to a particular species

– specify - to be specific

– specification - act of specifying

• Physical Sciences
– “specific gravity”, “specific heat”

• convey particular properties and characterize the
behavior of physical substances in any context of
their usage

February 1, 2000 © Kenneth M. Anderson, 2000 4

Specification, cont.

• Engineering and Architecture
– Specification means “a statement of particulars

describing the structural and behavioral details
of a product to be developed.

• Software Specification (a narrow view)
– Denotes “a precise description of a system’s

objects, a set of methods to manipulate them,
and a statement on their behavior for the
duration of their existence”

February 1, 2000 © Kenneth M. Anderson, 2000 5

Why do we need specifications?

• Complexity!
– Software

– Size

– Structural

– Environmental

– Application Domain

– Communication

February 1, 2000 © Kenneth M. Anderson, 2000 6

How do specifications help?

• A proper specification can control and
adequately contain certain types of
complexity

• Without specification, software complexity
is uncontrollable!
– As we shall see when we read Fred Brooks later

this semester

February 1, 2000 © Kenneth M. Anderson, 2000 7

Two Conceptual Tools for
Specifications

• Abstraction
– the specification contains only key features,

without a description on how they can be
realized

• Decomposition
– ensures that the properties of a system follow

from the properties of its parts

February 1, 2000 © Kenneth M. Anderson, 2000 8

Essential Specification Properties

• Define observable system behavior

• Define precise and simple interfaces

• composable (behavior of whole from parts)

• test for conformance

• Analyzable; given a property and a
specification, we should be able to prove
that the property holds for the system

February 1, 2000 © Kenneth M. Anderson, 2000 9

Essential Specification Properties

• It must be possible to develop a program
from the detail design specification

• The design specification must contain a
description of all behaviors expressed by
the behavioral specification

• It must be possible to test for conformance

• It must be possible to subject a specification
to rigorous analysis

February 1, 2000 © Kenneth M. Anderson, 2000 10

Specification Qualities

• Clear, Unambiguous, and Understandable
– Are these self-contradictory?

• For instance, being unambiguous often requires a lot of
qualifications, which can reduce clarity

• Consistent
– How can we check this?

• Internally and Externally Complete
– Does completeness reduce understandability?

– What about normal vs. exceptional behavior?

February 1, 2000 © Kenneth M. Anderson, 2000 11

Specifications are Software

• Have a Life cycle
– rationale, iteratively refined, used, & enhanced

• Should be Modular
– modularity promotes reuse and high cohesion

• Come in Versions
– you won’t get it right the first time…or its requirements

will change!

• Exhibit Dependencies
– but we want loose coupling...

February 1, 2000 © Kenneth M. Anderson, 2000 12

Cohesion and Coupling

• These concepts are typically applied to software
modules, OO classes, etc.
– but they actually can be applied to any set of items that

exhibit dependencies on each other

• Cohesion
– how focused an entity is on a particular task

• e.g. a software module that handles only one task

• Coupling
– the degree to which objects depend on each other

February 1, 2000 © Kenneth M. Anderson, 2000 13

Cohesion and Coupling, cont.

• We strive for high cohesion...
– A highly cohesive entity is focused on one task. If the

task changes, it impacts its associated entity only

– Low cohesion means that an entity is responsible for
more than one task, or a task is split between entities

• a change in a task then requires changes in multiple entities or
modifications to an entity that is only peripherally related to
the changed task

February 1, 2000 © Kenneth M. Anderson, 2000 14

Cohesion and Coupling, cont.

• …and we strive for loose coupling
– That is, we want a system with low interdependencies

– In highly coupled systems, a single change may impact
multiple entities

– Therefore a loosely coupled system is more resistant to
change, since it propagates to fewer entities

February 1, 2000 © Kenneth M. Anderson, 2000 15

Relationship to Specifications

• Highly cohesive specifications
– Focused on one aspect of a system

– If we have a question about that aspect, we go
to the one specification for that aspect

– Systems with similar needs can share the spec.

• Loosely coupled specifications
– If a specification changes, the impacts of the

change are mitigated and/or minimized

February 1, 2000 © Kenneth M. Anderson, 2000 16

Specifications Can Be Wrong

• Need to Validate and Verify (V&V)

• V&V is a “with respect to” Activity
– Implies existence of another specification

– But how do we V&V that other specification?

• Human Holds the Ultimate Specification
– This means that requirements are incomplete,

ambiguous, and may change frequently!

February 1, 2000 © Kenneth M. Anderson, 2000 17

Getting Specifications Right

• (Reusable) Layers and/or Modules Help
– A confidence game

• If we have used a specification before and it
contributed to a successful system, we have more
confidence in it than a newly developed
specification

• Formality Helps
– Mathematical models increase our ability to

check our assertions for correctness
February 1, 2000 © Kenneth M. Anderson, 2000 18

Specification Notations

• Key to Qualities

• Affect V&V Options

• Most are Equivalent in Expressive Power

• Differ in Expressive Convenience

February 1, 2000 © Kenneth M. Anderson, 2000 19

Specification/Modeling Styles
• Operational (or Imperative)

– Described according to desired actions

– Usually given in terms of an execution model

• Descriptive (or Declarative)
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Structural (or Relational)
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs

February 1, 2000 © Kenneth M. Anderson, 2000 20

An Informal Specification

• A system consists of a set of object files.
Each object file is derived from one or more
source files. Object and source files have a
timestamp indicating when they were last
modified. If an object file is older than any
source file, then the object file must be
rederived.

February 1, 2000 © Kenneth M. Anderson, 2000 21

First Steps

• A system consists of a set of object files.
Each object file is derived from one or more
source files. Object and source files have a
timestamp indicating when they were last
modified. If an object file is older than any
source file, then the object file must be
rederived.

February 1, 2000 © Kenneth M. Anderson, 2000 22

Formalize

• O = {o1, o2, o3, …}

• S = {s1, s2, s3, …}
• F = O ∪ S

• T: F →ℜ
• D: O → PowerSet(S)

• ForAll(o ε O),
ForAll(s ε D(o))
T(o) > T(s)

• O = set of object files

• S = set of source files

• F = all files

• T = timestamp relation

• D = derived relation

• An assertion: o’s
timestamp must be
greater than the
timestamps of D(o)

February 1, 2000 © Kenneth M. Anderson, 2000 23

Make Specification Language

• Hybrid Declarative/Imperative/Relational

• Dependencies are Relational

• Rules are Declarative

• Actions are Imperative

