
Lecture 4: Formal SE

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

January 27, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Introduction to Formal Software Engineering
– Discuss Models

– Discuss Formal Notations

January 27, 2000 © Kenneth M. Anderson, 2000 3

Formal Software Engineering

• Software
 Computer programs and their related artifacts

• Engineering
 The application of scientific principles in the

context of practical constraints

• Formal
 The use of models, techniques, and tools that

are grounded in mathematics
January 27, 2000 © Kenneth M. Anderson, 2000 4

Some Important Points
• Formal does not mean Hard

• Formal does not mean Good

• Informal does not mean Bad

– unless it means ad hoc rigor

fo
rm
al
ity

January 27, 2000 © Kenneth M. Anderson, 2000 5

What Are “Formal Methods”?

❶Writing a formal specification

❷Proving properties about the specification

❸Constructing a program by mathematically
manipulating the specification

❹Verifying the program by mathematical
argument

January 27, 2000 © Kenneth M. Anderson, 2000 6

Formal SE is Broader

• Architecture

• Analysis/Testing

• Reliability and Performance Engineering

• Configuration Management

• Process Management, etc.

Not just specification and verification of programs…

January 27, 2000 © Kenneth M. Anderson, 2000 7

Model/Specification/Formalism

• Model
– An abstract representation

• Specification
– A formal expression of a model or of a property

of a model

• Formalism
– A mathematical notation for writing

specifications; a specification language
January 27, 2000 © Kenneth M. Anderson, 2000 8

Specification and the Life Cycle

• Requirements

• Design
– High level and Low level

• Implementation

• Test

Specification is used in All Activities

January 27, 2000 © Kenneth M. Anderson, 2000 9

Specification/Modeling Styles

• Operational

• Declarative
– Axiomatic

– Algebraic

• Structural/Relational

Choice of style dictated by focus of concerns

January 27, 2000 © Kenneth M. Anderson, 2000 10

Specification/Modeling Styles
• Operational (or Imperative)

– Described according to desired actions

– Usually given in terms of an execution model

• Descriptive (or Declarative)
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Structural (or Relational)
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs

January 27, 2000 © Kenneth M. Anderson, 2000 11

Logical Foundations

• Predicate/Propositional Logic

• Temporal Logic Systems

• Lambda calculus, etc.

January 27, 2000 © Kenneth M. Anderson, 2000 12

Propositional Logic

• A proposition is a statement that is either
true or false, but not both

• Propositional Logic is the language of
propositions
– It consists of well-formed formulas constructed

from atomic formulas and logical connectives

– The meaning of a proposition is determined by
the truth values assigned to its assertions

January 27, 2000 © Kenneth M. Anderson, 2000 13

Example

• P = “program does not terminate”

• Q = “alarm rings forever”

• P ⇒ Q (If the program does not terminate
then alarm rings forever)

•P Q P ⇒ Q

•T T T

•T F F

•F T/F T

January 27, 2000 © Kenneth M. Anderson, 2000 14

Library Example

• S: a book is on the stacks

• R: a book is on reserve

• L: a book is on loan

• Q: a book is requested

• Constraints
– A book can be in only one of three states S, R, and L

– If a book is on the stacks or on reserve
then it can be requested

January 27, 2000 © Kenneth M. Anderson, 2000 15

Library Example, continued

• Constraints specified as propositions
A: S ⇔¬(R ∨ L)

B: R ⇔¬(S ∨ L)

C: L ⇔¬(S ∨ R)

D: Q ⇒ (S ∨ R)

• Prove “if a book is on loan then it is not
requested” is a logical consequence

January 27, 2000 © Kenneth M. Anderson, 2000 16

(One Possible) Solution

• Proof by Contradiction
❶ L ⇒ ¬Q

❷ ¬ (¬ L ∨ ¬Q)

❸ L ∧ Q

❹ L
❺ ¬(S ∨ R)

❻ Q

❼ (S ∨ R)

❽ Contradiction

• Steps
– This is our goal

– We negate it…

– …and get this

– Conjunction Elim, 3

– Biconditional Elim, 4, C

– Conjunction Elim, 3

– Modus Ponens, 6, D

– 5 and 7 contradict

January 27, 2000 © Kenneth M. Anderson, 2000 17

Another Solution

• Direct Proof
– Q → (S ∨ R)

– ¬Q ∨ (S ∨ R)

– L ⇔ ¬(S ∨ R)

– ¬L ⇔ (S ∨ R)

– ¬Q ∨ ¬L

– ¬L ∨ ¬Q

– L → ¬Q

• Steps
– D

– Logical Equivalence of 1

– C

– Double Negation of 3

– Substitution, 2, 4

– ∨ is communicative

– Logical Equivalence of 6

January 27, 2000 © Kenneth M. Anderson, 2000 18

Predicate Logic

• Propositional Logic cannot specify the
relationships between objects
– It can only assert that particular properties hold

or do not hold within a set of propositions

• Predicate Logic has the power to do so
– consists of

• constants, predicates, variables, and functions

January 27, 2000 © Kenneth M. Anderson, 2000 19

Example use of predicate logic

• Consider lines and points on a plane
– (1) two lines meet at a unique point

– (2) there is a unique line through any two points

– line(x) = x is a line

– point(x) = x is a point

– lies_on(x, y) = point x is contained in line y

January 27, 2000 © Kenneth M. Anderson, 2000 20

Example, continued

• domain distinction
– (a) ∀ x • (point(x) ∨ line(x));

– (b) ∀ x • (¬(point(x) ∧ line(x)));

• incidence
– ∀ x, y • (lies_on(x, y) ⇒ (point(x) ∧ line(y)));

January 27, 2000 © Kenneth M. Anderson, 2000 21

Mathematical Foundations

• Set theory

• Graph theory

• Automata theory

• Abstract algebra

• Probability and statistics

January 27, 2000 © Kenneth M. Anderson, 2000 22

Analysis of Specifications

• Static Analysis
 Examines specification text to reveal

properties

• Dynamic Analysis
 Executes specification text to reveal

properties

Choice of analysis dictated by focus of concerns
and choice of specification style

