
Lecture 3: Software Life Cycles

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

January 25, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Briefly Review Software Life Cycles

• Discuss problems associated with them

January 25, 2000 © Kenneth M. Anderson, 2000 3

Software Life Cycle

• A series of steps that organizes the
development of a software product

• Duration can be from days to years

• Consists of
– people!

– overall process

– intermediate products

– stages of the process

January 25, 2000 © Kenneth M. Anderson, 2000 4

Software Artifacts

• Intermediate Software Products
– Demarcate end of phases

– Enable effective reviews

– Specify requirements for next phase

• Form
– Rigorous

– Machine processible (highly desirable)

• Content
– Specifications, Tests, Documentation

January 25, 2000 © Kenneth M. Anderson, 2000 5

Example Artifacts

• Options Document
– Problem Definition

– Potential Solutions

– Proposed System

• Cost-Benefit Analysis
– Benefits

• Achievable Goals

– Costs
• Development & Maint.

– Analysis
• Net improvement

• Requirements
– Boilerplate

– Project scope

– Project history

– Current System

– New System

– Requirements

• Preliminary Plan
– Statement of Work

Mgmt, Docs, Testing Plans

– Schedules

January 25, 2000 © Kenneth M. Anderson, 2000 6

Phases of a Software Life Cycle

• Standard Phases
– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout!

• Phases promote manageability and provide
organization

January 25, 2000 © Kenneth M. Anderson, 2000 7

Requirements Analysis and
Specification

• Problem Definition —> Requirements Specification
– determine exactly what client wants and identify constraints

– develop a contract with client

– Specify the product’s task explicitly

• Difficulties
– client asks for wrong product

– client is computer/software illiterate

– specifications may be ambiguous, inconsistent, incomplete

• Validation
– extensive reviews to check that requirements satisfy client needs

– look for ambiguity, consistency, incompleteness

– check for feasibility, testability

– develop system/acceptance test plan

January 25, 2000 © Kenneth M. Anderson, 2000 8

Design

• Requirements Specification —> Design
– develop architectural design (system structure)

• decompose software into modules with module interfaces

– develop detailed design (module specifications)
• select algorithms and data structures

– maintain record of design decisions

• Difficulties
– miscommunication between module designers

– design may be inconsistent, incomplete, ambiguous

• Verification
– extensive design reviews (inspections) to determine that design conforms to

requirements

– check module interactions

– develop integration test plan

January 25, 2000 © Kenneth M. Anderson, 2000 9

Implementation and Integration

• Design —> Implementation
– implement modules and verify they meet their specifications

– combine modules according to architectural design

• Difficulties
– module interaction errors

– order of integration has a critical influence on product quality

• Verification and Testing
– code reviews to determine that implementation conforms to requirements and design

– develop unit/module test plan: focus on individual module functionality

– develop integration test plan: focus on module interfaces

– develop system test plan: focus on requirements and determine whether product as a whole
functions correctly

January 25, 2000 © Kenneth M. Anderson, 2000 10

Operation and Maintenance

• Operation —> Change
– maintain software after (and during) user operation

– determine whether product as a whole still functions correctly

• Difficulties
– design not extensible

– lack of up-to-date documentation

– personnel turnover

• Verification and Testing
– review to determine that change is made correctly and all documentation updated

– test to determine that change is correctly implemented

– test to determine that no inadvertent changes were made to compromise system functionality
(check that no affected software has regressed)

January 25, 2000 © Kenneth M. Anderson, 2000 11

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Build-and-Fix

January 25, 2000 © Kenneth M. Anderson, 2000 12

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Waterfall Model

January 25, 2000 © Kenneth M. Anderson, 2000 13

Two views on Waterfall

• Business Systems
– Enterprise initiatives lead to feasibility studies

• This starts the waterfall in motion

• Engineering Applications
– Waterfall starts much later in the process

• Software may not be considered until after concept
exploration and experimental prototyping of global
engineering system

January 25, 2000 © Kenneth M. Anderson, 2000 14

Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

January 25, 2000 © Kenneth M. Anderson, 2000 15

For each build:
Perform detailed
design, implement.
Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

January 25, 2000 © Kenneth M. Anderson, 2000 16

Concept of
Operation

Requirements
Plan

Requirements
OAC

Risk
Assessment

Risk
 It

em
 Set

Risk
 M

anagement P
lan

Requirements

Risk
Control

Requirements
Validation

Abstract Specification
 Plan

 Abstract
Specifcation
OAC

Risk
Assessment

Risk
Control

Abstract
Specification

Abstract Specification
Validation

Concrete Specification
 Plan

 Concrete
Specification
OAC

Concrete
Specification

Concrete
Specification Validation
and Verification

Software
Development Plan

Risk
Assessment

Risk
Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

Commit
Review

partition

Determine
objectives,
alternatives,
constraints
(OAC)

The Spiral Model [Boehm,1988]

January 25, 2000 © Kenneth M. Anderson, 2000 17

Object-Oriented Life Cycles

• Obtain customer requirements for the OO System
– Identify scenarios or use cases

– Build a requirements model

• Select classes and objects using basic requirements

• Identify attributes and operations for each object

• Define structures and hierarchies that organize classes

• Build an object-relationship model

• Build an object-behavior model

• Review the OO analysis model against use cases

January 25, 2000 © Kenneth M. Anderson, 2000 18

Life Cycle Problems

• The user’s view of software development
– The waterfall is not “real” to them

• Consider Construction of a House
– Decisions are visible

• The lot

• The position of the house on the lot

• Landscaping

• Pouring the Foundation

January 25, 2000 © Kenneth M. Anderson, 2000 19

Constructing a House, continued

• As each decision is made, the “user” can see
its effects
– Its easy to see that making a change to the

position of the house on the lot is expensive
after the foundation is poured

• Its harder to determine what events in a
software life cycle “casts things in
concrete!”

January 25, 2000 © Kenneth M. Anderson, 2000 20

Software-based Example

if (employee_age > 60) then

…

end if;

Imagine the implications if the actual
retirement age changed to 59.5
– how many instances of the “magic number” 60?

– floating point package?

– tax implications?

January 25, 2000 © Kenneth M. Anderson, 2000 21

Consequences of the Change

• Integer to Rational
– Or to stay with integers

• change all values to months (round up or down?)

• Was “60” used for other purposes?
– If so, you must ensure that the code isn’t

intertwined

• Update all requirements documents, design
documents, specifications, etc.

January 25, 2000 © Kenneth M. Anderson, 2000 22

Life Cycle Problems

• Requirements are incomplete

• Waterfall is expensive

• It takes too long

• Too many variations

• Communications Gap

• Assumes “What” can be separated from “How”

• Error Management

January 25, 2000 © Kenneth M. Anderson, 2000 23

Requirements are Incomplete

• Boehm reports that incomplete requirements cause
downstream costs to increase exponentially!

• Issues
– Computerization affects Environment

– “Report Effect”

– Lack of Visibility

– People are not used to attaining completeness
• Consider the construction of an airplane

– Many details are covered by standards…

January 25, 2000 © Kenneth M. Anderson, 2000 24

It costs too much!

• The waterfall was introduced when
– computer time was more expensive than person time

• forced extensive desk planning

• use of time and space optimized

• Now, computer time is extremely cheap
– but our methods haven’t changed (at least not much)!

• The management of artifacts as the life cycle
progresses requires more and more resources
– New methods must focus on this information

management task

January 25, 2000 © Kenneth M. Anderson, 2000 25

It takes too long!

• Example Waterfall (> 400 important entities)
– 114 major tasks over 87 different organizations

– 39 deliverables requiring 164 authorizations

• All of this allows people to “talk” about the
project rather than “doing” the project!

• Inevitably, a project taking too long, gets cut short
– results in incomplete or non-functional system

January 25, 2000 © Kenneth M. Anderson, 2000 26

It takes too long! (continued)

• What to do?
– Experience will help

– CMM-like methods will increase the
organization’s ability to predict schedules

– Rules needed when project is shortened
• What requirements are removed?

• How is the system’s functionality scaled back?

January 25, 2000 © Kenneth M. Anderson, 2000 27

Too many variations!

• Key problems
– communication between practitioners

• each builds large systems but use
– different vocabulary

– different steps

– different deliverables

– Difficult to assess life cycle critically
• Problems are shared by all; but without common

understanding how are root causes found?

January 25, 2000 © Kenneth M. Anderson, 2000 28

End-User Communications Gap

“What we understand to be the conventional life
cycle approach might be compared with a
supermarket at which the customer is forced to
provide a complete order to a stock clerk at the
door of the store with no opportunity to roam the
aisles–comparing prices, remembering items not
on the shopping list, or getting a headache and
deciding to go out for dinner…”

[McCracken and Jackson, 1982]

January 25, 2000 © Kenneth M. Anderson, 2000 29

Communications Gap, continued

• User involvement throughout the life cycle
– Participatory Design, HCI, and CSCW fields

• Watch out for communications gap within a
development team!
– Horizontal Team Integration considered bad

• Tends to be little review; no chance for self-correction

– Vertical Teams better; maintenance still a problem

January 25, 2000 © Kenneth M. Anderson, 2000 30

“What vs. How”

• Life cycles assume: a problem description
can be separated from a problem solution

• Humans do not typically behave this way!
– People like to consider a range of solutions

• What are the trade-offs?

• A solution strategy may help clarify the problem

– How do we integrate “normal” human behavior
into modern life cycles?

January 25, 2000 © Kenneth M. Anderson, 2000 31

Error Management

• It is impossible to predict all of the errors that a
software system must handle

• Thus, a module’s initial design is very likely to be
incomplete!
– Some errors may exist only because of a particular

implementation strategy

– if so, an implementation choice may then impact the
interface of the module (which is typically set during
design)

