
Lecture 2: SE Review

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

January 20, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Review Software Engineering definitions

• Discuss the Nature of Software
– Present Software Qualities

• Examine Software Engineering principles

January 20, 2000 © Kenneth M. Anderson, 2000 3

Software Engineering

• Software
– Computer programs and their related artifacts

• e.g. requirements documents, design documents, test
cases, specifications, protocol documents, UI
guidelines, usability tests, ...

• Engineering
– The application of scientific principles in the

context of practical constraints

January 20, 2000 © Kenneth M. Anderson, 2000 4

What is Engineering?

• Engineering is
– a sequence of well-defined, precisely-stated, sound

steps, which follow a method or apply a technique
based on some combination of

• theoretical results derived from a formal model

• empirical adjustments for unmodeled phenomenon

• rules of thumb based on experience

• This definition is independent of purpose...
– i.e. engineering can be applied to many disciplines



January 20, 2000 © Kenneth M. Anderson, 2000 5

Software Engineering (Daniel M. Berry)

• Software engineering is that form of engineering
that applies:
– a systematic, disciplined, quantifiable approach,

– the principles of computer science, design, engineering,
management, mathematics, psychology, sociology, and
other disciplines,

• to creating, developing, operating, and
maintaining cost-effective, reliably correct, high-
quality solutions to software problems.

January 20, 2000 © Kenneth M. Anderson, 2000 6

Software Engineering

– the study of software process, requirements and
design notations, implementation strategies, and
testing techniques

– the production of quality software, delivered
on-time, within budget, and satisfying its users’
needs

– halfway between a discipline and an art form(!)

January 20, 2000 © Kenneth M. Anderson, 2000 7

• Theory of Programs and Programming

• Formal & Heuristic Methods

• Configuration Management

• Testing

• Requirements & Design

• Metrics/Experimental SE

• Software Architecture, etc.

Sub-fields of SE

January 20, 2000 © Kenneth M. Anderson, 2000 8

Software is Malleable

• Webster’s definition
– susceptible of being fashioned into a different

form or shape

• Why is this bad?
– Too easy to change software without going

back to change requirements, design, etc.
• This would never be done in other engineering

disciplines!



January 20, 2000 © Kenneth M. Anderson, 2000 9

Design vs. Manufacturing

• The creation of software is human-intensive
– In other engineering disciplines, the majority of

the costs associated with a product are located
in manufacturing

– In SE, software is more design intensive
• Manufacturing is a trivial step (low relative cost)

• Software maintenance is more costly
– 67% of a software system’s costs occur in this phase!

January 20, 2000 © Kenneth M. Anderson, 2000 10

Software Qualities

• Correctness

• Reliability

• Robustness

• Performance

• User Friendliness

• Verifiability

• Maintainability

• Reusability

• Portability

• Understandability

• Interoperability

• Productivity

• Timeliness

• Visibility

January 20, 2000 © Kenneth M. Anderson, 2000 11

Classifications of Qualities

• External vs. Internal
– external - visible to a

system’s end-user

– internal - visible only to
a system’s developers

– internal qualities help
developers achieve
external qualities

– boundary is blurry

• Product vs. Process
– qualities of a process can

impact the qualities of a
product

– Note: product can take
on different meanings for
different stakeholders

• developers, marketing,
customers

January 20, 2000 © Kenneth M. Anderson, 2000 12

Correctness

• A system is functionally correct
– if it behaves according to its functional

requirements specifications

• Correctness asserts an equivalence between
– the software and its specifications

• Assessment
– Testing and Verification (program proofs)



January 20, 2000 © Kenneth M. Anderson, 2000 13

Reliability

• Can a user depend on software?

• A system can be reliable but not correct
– e.g. the fault is not serious in nature and the

user can continue to get work done in its
presence

• Contrast with other engineering disciplines
– Engineering products are expected to be

reliable; with software, users expect bugs!

January 20, 2000 © Kenneth M. Anderson, 2000 14

Robustness

• How well does a system behave in
situations not specified by its requirements?
– Examples

• incorrect input, hardware failure, loss of power

• Related to correctness
– response specified

• implementation must handle to be correct

– response not specified => robustness involved

January 20, 2000 © Kenneth M. Anderson, 2000 15

Software Qualities, continued

• Performance
– In SE, performance is equated with efficiency

• How quickly does it perform its operations?

• Does it make efficient use of resources?

• Is it scalable?

• User Friendliness
– Better term: Human-Computer Interaction

• Related: Human Factors, Cognitive Science

January 20, 2000 © Kenneth M. Anderson, 2000 16

Software Qualities, continued

• Verifiability
– Can properties of the system be verified?

– Typically an internal quality
• Security and safety critical domains are exceptions

• Maintainability
– Corrective, Adaptive, and Perfective

– Related: Repairability and Evolvability



January 20, 2000 © Kenneth M. Anderson, 2000 17

Software Qualities, continued

• Reusability
– software components, people, requirements

– SE needs to make reuse standard practice
• Why? It’s standard practice in all engineering

disciplines!

• Portability
– The ability to run the same system in multiple

contexts (typically hardware/OS combinations)

January 20, 2000 © Kenneth M. Anderson, 2000 18

Software Qualities, continued

• Understandability
– How well do developers understand a system

they have produced?
• supports evolvability and understandability

• Interoperability
– Can a system coexist and cooperate with other

systems?

– Again, present in other engineering disciplines

January 20, 2000 © Kenneth M. Anderson, 2000 19

Software Qualities, continued

• Productivity
– The efficiency of a development process

• An efficient process can produce a product faster
and with higher quality

• Can parts of it be automated?

• Standard processes?
– Software Life Cycles

– Capability Maturity Model

» Measure everything!

» Use the results to improve the process the next time

January 20, 2000 © Kenneth M. Anderson, 2000 20

Software Qualities, continued

• Visibility
– A process is visible if all of its results and

current status are documented clearly to internal
and external viewers

• Timeliness
– The ability to deliver a system on-time

• requires careful scheduling, accurate estimates and
visible milestones



January 20, 2000 © Kenneth M. Anderson, 2000 21

Software Engineering Principles

• Rigor and Formality

• Separation of Concerns

• Modularity

• Abstraction

• Anticipation of Change

• Generality

• Incrementality

January 20, 2000 © Kenneth M. Anderson, 2000 22

Rigor and Formality

• Webster definition for Rigor
– strict precision

– Is this at odds with creativity?
• No, you can still be creative but apply rigorous

standards in assessing the product of creativity

• The highest level of rigor is formality
– Mathematically-based techniques

– The trick is knowing when you need it!

January 20, 2000 © Kenneth M. Anderson, 2000 23

Separation of Concerns

• Identify different aspects of a problem
– so that they can each be addressed separately

– the idea is to reduce complexity

• Separation by Time
– Software life cycles

• Separation by Qualities
– Correctness vs. Performance, for example

January 20, 2000 © Kenneth M. Anderson, 2000 24

Modularity

• Systems can be divided into modules
– Modules help address separation of concerns

• bottom-up design: modules in isolation

• top-down design: global module relationships
– Cohesion and Coupling are major concerns

• Modularity is important in other
engineering disciplines
– factories produce products from components



January 20, 2000 © Kenneth M. Anderson, 2000 25

Abstraction

• Identify the important aspect of some
phenomenon and ignore the details

• Allows the user of an abstraction to be
independent of the hidden details
– This allows the details to change without a user

knowing about it (or caring)

• Abstraction supports the design of layered
systems or virtual machines

January 20, 2000 © Kenneth M. Anderson, 2000 26

Anticipation of Change

• We know that software will change
– Bug fixes, environmental changes, new features

• So how do we plan for it?
– Modularization and Abstraction

– Configuration Management Systems

• Need to anticipate personnel turnover

January 20, 2000 © Kenneth M. Anderson, 2000 27

Generality

• Attempt to find general (broad) solutions to
(software) problems
– A general solution is more likely to be reusable

• Trade-off
– The general solution may not be efficient

• its hard to optimize something that must work across
many different contexts

January 20, 2000 © Kenneth M. Anderson, 2000 28

Incrementality

• Characterizes a process which proceeds in a
stepwise fashion
– The desired goal is reached by creating successively

closer approximations to it

• Examples
– Software life cycles

• Especially those with prototypes and user feedback

– “Don’t write the whole program before you compile!”


