
January 18, 2000 © Kenneth M. Anderson, 2000 1

Lecture 1: Course Overview

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

January 18, 2000 © Kenneth M. Anderson, 2000 2

CATECS Announcements

• In-Class Students
– CATECS has a busy studio schedule

• Be sure to exit promptly so next class can begin on
time

– Food and Drink are not technically allowed
• Drinks are tolerated

– as long as you keep the studio clean!

January 18, 2000 © Kenneth M. Anderson, 2000 3

Live-Site Students

• Place speakerphone away from the TV
– Make sure its pointed away from the TV

• If you have connection problems
– hang up, wait 15 seconds, then call again

• If your speakerphone has a mute button
– use it when not talking!

January 18, 2000 © Kenneth M. Anderson, 2000 4

Class Participation

• I expect you to participate!
– Questions

• “Stupid questions” -- No such thing

– Discussion
• “Silent Tomb” -- Not allowed

• CATECS students
– Live-site students (same as above)

– Tape students (via e-mail)

January 18, 2000 © Kenneth M. Anderson, 2000 5

The Instructor

• Ken Anderson
– Office Hours: ECOT 523

• By Appointment only...

• Send me e-mail to set an appointment

– E-mail
• <kena@cs.colorado.edu>

– Phone
• +1.303.492.6003

January 18, 2000 © Kenneth M. Anderson, 2000 6

The Instructor, continued

• Ken Anderson
– Mailing Address

Dr. Kenneth M. Anderson

University of Colorado, Boulder

Department of Computer Science

ECOT 717, Campus Box 430

Boulder, CO 80309-0430

– Department FAX
• +1.303.492.2844

January 18, 2000 © Kenneth M. Anderson, 2000 7

The Instructor, Background

• Assistant Professor
– Fourth semester, taught 5828 last Spring

– Ph.D. from University of California, Irvine

– Research Topics
• Open Hypermedia

• Software Engineering

– Software Experience
• Three Systems ranging from 30K-60K LOC

January 18, 2000 © Kenneth M. Anderson, 2000 8

Teaching Philosophy
• “sage-on-stage” vs. “guide-at-your-side”

• lecture vs. participation

• Answering questions
– Sometimes the answer will be “I don’t know!”

• I welcome comments and questions from students!

January 18, 2000 © Kenneth M. Anderson, 2000 9

Useful URLs

• CATECS
– <http://www.colorado.edu/ContinuingEducation/CATECS/>

• Computer Science Department
– <http://www.cs.colorado.edu/>

• Instructor’s Homepage
– <http://www.cs.colorado.edu/~kena/>

• Class Homepage
– <http://www.cs.colorado.edu/~kena/classes/5828/s00/>

January 18, 2000 © Kenneth M. Anderson, 2000 10

About the Class Website

• You have one continuous homework
assignment this semester:
– Check the class website EVERY day

• Preferably more than once each day

• Website will be your source for
– Class schedule

– Homework assignments

– Pointers to class-related information

January 18, 2000 © Kenneth M. Anderson, 2000 11

Prerequisites

• Background in Basic SE Concepts
– Software Systems

– Software Lifecycles
• Requirements

• Design

• Implementation

• Maintenance

– Software Tools (e.g. make, rcs, etc.)

January 18, 2000 © Kenneth M. Anderson, 2000 12

Currently-Planned Course Topics

• Basic Principles of Software Engineering
– Essentially a review

• Formal Software Specification Techniques

• Fred Brooks
– Mythical Man-Month

– No Silver Bullet

– 20th-year Reflections

• “Hot” Topics

January 18, 2000 © Kenneth M. Anderson, 2000 13

Course Evaluation

• Fred Brooks Paper

• Semester Project

• ---------------------------

• Total

Homeworks

No Exams

 30%

 70%

100%

“fine-tuning” of grade

January 18, 2000 © Kenneth M. Anderson, 2000 14

General Notes on Assignments

• Electronic Submission OK
• Text or Postscript/PDF formats only

• You will probably want to use paper for homework
assignments, however

– CATECS requires the following information on
the first page of all assignments

• student name, course number, company name,
assignment name or number

January 18, 2000 © Kenneth M. Anderson, 2000 15

Homework Assignments

• Format
– Examine the SE literature in more depth

– Practice the techniques covered in class

• Typically one-week in length
– (CATECS students will be one week behind)

– Some assignments may be allocated more time
based on difficulty

January 18, 2000 © Kenneth M. Anderson, 2000 16

Semester Project

• Explore a topic of the class in-depth
– Examples

• Investigate a specification language not covered in class

• Specify a program’s behavior with Petri-Nets

• Build an analysis tool

• Analyze your company’s software lifecycle

– Work will thus vary across projects
• Éffort should be equivalent to a 25 page paper

• Project proposals are due February 3rd
– I will send out examples of previous projects

January 18, 2000 © Kenneth M. Anderson, 2000 17

Example Project Description

• <Show Example Project Description>

January 18, 2000 © Kenneth M. Anderson, 2000 18

Fred Brooks Paper

• 10 page paper

• Identify a theme
– Critically evaluate it

– Show how Brooks develops the idea and
supports it

– (If possible) relate it to your present-day work
experience

• Submit paper ideas via e-mail for approval

January 18, 2000 © Kenneth M. Anderson, 2000 19

Course Textbooks

• Fundamentals of Software Engineering
– by Ghezzi, Jazayeri, and Mandrioli

– © 1991

• The Mythical Man-Month
• 20th Anniversary Edition

– by Fred Brooks

– © 1975, 1995

January 18, 2000 © Kenneth M. Anderson, 2000 20

Historical Background: 30 years

• First Software Engineering Conference
– NATO-sponsored conference in 1968

• “Software Crisis”
– Systems were designed by identifying the

hardware first
• Software was allocated about 1-2% of the budget

– However, software was causing all the
problems (!) and thus needed more attention

January 18, 2000 © Kenneth M. Anderson, 2000 21

Progression of SE

• An evolution of the programming activity
– Early stages of computing

• User/Developer were the same person

• Problems were well-understood
– First programs calculated metrics about artillery shells for

the Navy!

– High level languages began to appear in the
1950s

• Along with the profession of “programmer”

January 18, 2000 © Kenneth M. Anderson, 2000 22

SE Progression, continued

• 1960’s
– Large Software Systems for Commercial

Ventures
• Teams of Programmers

• Separate end-users

• Complex Problems

– “Software Crisis” coined as problems became
apparent

January 18, 2000 © Kenneth M. Anderson, 2000 23

The problem?

• Software is typically
– late

– over budget

– faulty

– costly to maintain

– difficult to evolve

– etc.

January 18, 2000 © Kenneth M. Anderson, 2000 24

Consider the following:

• Loss of NASA’s Mars Climate Observer
– due to conversion error of English and Metric units!

• Leap-year bug
– A supermarket was fined $1000 for having meat around

1 day too long on Feb. 29, 1988

• Denver International Airport
– Luggage system: 16 months late, 3.2 billion dollars

over budget!

• <other examples>

January 18, 2000 © Kenneth M. Anderson, 2000 25

SE Progression, continued

• 1968
– Software Engineering formed

– Many “solutions” put forward
• New approaches to Project Management

• New Team Organizations

• Better Languages and Tools

• Organizational Standards

• And here we are 30 years later! :-)

January 18, 2000 © Kenneth M. Anderson, 2000 26

Intuitive notions of SE

• Programming?

• Chemist vs. Chemical Engineer
– How does this analogy apply to SE?

January 18, 2000 © Kenneth M. Anderson, 2000 27

Software Engineering

• Software
– Computer programs and their related artifacts

• e.g. requirements documents, design documents, test
cases, specifications, protocol documents, UI
guidelines, usability tests, ...

• Engineering
– The application of scientific principles in the

context of practical constraints

January 18, 2000 © Kenneth M. Anderson, 2000 28

What is Engineering?

• Engineering is
– a sequence of well-defined, precisely-stated, sound

steps, which follow a method or apply a technique
based on some combination of

• theoretical results derived from a formal model

• empirical adjustments for unmodeled phenomenon

• rules of thumb based on experience

• This definition is independent of purpose...
– i.e. engineering can be applied to many disciplines

January 18, 2000 © Kenneth M. Anderson, 2000 29

Software Engineering (Daniel M. Berry)

• Software engineering is that form of engineering
that applies:
– a systematic, disciplined, quantifiable approach,

– the principles of computer science, design, engineering,
management, mathematics, psychology, sociology, and
other disciplines,

• to creating, developing, operating, and
maintaining cost-effective, reliably correct, high-
quality solutions to software problems.

January 18, 2000 © Kenneth M. Anderson, 2000 30

Software Engineering

– the study of software process, requirements and
design notations, implementation strategies, and
testing techniques

– the production of quality software, delivered
on-time, within budget, and satisfying its users’
needs

– halfway between a discipline and an art form(!)

