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Goals

• Cover the material presented in Part One of our Agile textbook


• Chapters 6 to 9


• Building Software Feature by Feature


• Slicing Features (and then growing them over time)


• Ensuring Code Quality


• Test Driven Design


• Refactoring
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Reminder: The Natural Way in a Nutshell
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Value

Quality

Slicing

Building

Planning

Organizing

Guiding
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Getting the Software Built

• Chapters 6, 7, and 8 talk about getting a software system implemented


• feature by feature


• in a sustainable fashion


• while ensuring code quality


• (Chapter 9 is just a single page and just summarizes the lessons learned)


• These chapters fulfill Jeffries promise that the natural way is


• “simple but not easy”


• The issues discussed are tricky and require thought and practice to get right
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Building

• Is it possible to build a system feature by feature?


• Yes! Jeffries asserts that teams have been doing this successfully for 
decades


• To do it, our work has to occur in short cycles (1-3 weeks)


• In that cycle, we


• define the next features to build and we identify how they are tested


• build the features and then verify that they pass our tests


• In that cycle we


• engage in a complete product development life cycle


• concept, requirements, design, implement, test, deploy
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Short Iterations are Hard

• It will take some work to be able to work in this manner


• When you start down this path, it will be hard; you won’t be good at it


• It is important not to get discouraged and to keep trying


• Work to understand how to set scope


• and how to build a complete, deployable feature (user story)


• At the beginning, your meta-goal is to learn


• learn how much can be done in a short iteration


• how to test your code properly


• how to write user stories


• how to inject quality in the process over time
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Keep Working to Identify “What We Want”

• As we progress, we need to constantly engage the customer to ensure we are 
building valuable features


• We have to gather information so that ambigious, high level statements get 
turned into small, easy-to-understand user stories


• what MUST the system do? vs. what is “nice to have”


• Always work on the highest priority features


• As new user stories get added and our vision of the system evolves make 
sure the user is reviewing the priorities of existing stories relative to the 
new ones


• Be very clear about what “done” means


• Sometimes there is “done” and then there is “done done”. Be clear!
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The Hard Part: Eliminate Test and Fix

• Lots of projects add a “test and fix” cycle at the end of a project


• Build, build, build, and then test, test, test, test, test, …


• In Agile, we must attempt to avoid this at all costs


• we have to do what we can to avoid injecting defects into what we build


• if we build low-quality software then we kill our ability to deliver new 
features as we spend time fixing old features


• ones we thought were “done” but weren’t


• For this style of development to work, the software needs to be nearly defect 
free at the end of an iteration and for each release


• How do we do that? Stay tuned (Foreshadowing: it’s tough!)

8



© Kenneth M. Anderson, 2015

Slicing: Build Features and Foundation in Parallel

• In Chapter 7, Jeffries acknowledges the difficulty of building a feature


• You need a complete vertical stack for the feature to work

• UX, app logic, services, data stores


• And for that to work you need a foundation upon which the features rest


• There are several approaches to do this


• Build a strong foundation first; then work on features


• Build lots of features with very little unifying foundation; integrate later


• Build features/foundation in parallel


• The first two will slow you down; the third is what Jeffries recommends 

• To make this work, you need to “version” your features


• build a simple version of a feature first with just enough foundation

• grow both over time
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Quality: Bug-Free and Well Designed

• In Chapter 8, Jeffries talks about injecting quality into the agile life cycle


• At a high-level, his recommendations are


• test everything


• have business tests (written by the customer) that confirm the 
features are working


• have (lots of) developer tests that are run every day


• unit tests and integration tests


• using test-driven development


• always improve/maintain your design via refactoring
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Wrapping Up The First Half of the Book

• We’ve now encountered the various aspects that make up Ron Jeffries’s 
natural way of develop software


• Our primary goal is to create value for our customer/user


• by delivering a working software system with valuable features


• features that solve a problems they currently have


• We do this by guiding, organizing, planning, and building the system in an 
iterative, incremental fashion feature by feature such that


• it’s easy to measure progress


• get feedback


• achieve high quality
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Deep Dives

• Let’s continue by taking a look at


• Refactoring


• and


• Test-Driven Development
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What is Refactoring

• Refactoring is the process of changing a software system such that


• the external behavior of the system does not change


• e.g. functional requirements are maintained


• but the internal structure of the system is improved


• This is sometimes called


• “Improving the design after it has been written”


• It is known in Agile circles as helping to pay down “technical debt”


• Technical debt is defined as the continuous accumulation of shortcuts, 
hacks, duplication, and other sins that we regularly commit against our 
code base in the name of speed and schedule.
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(Very) Simple Example

• Consolidate Duplicate Conditional Fragments (page 243); This

if (isSpecialDeal()) {

    total = price * 0.95;

    send()

} else {

    total = price * 0.98;

    send()

}

• becomes this

if (isSpecialDeal()) {

    total = price * 0.95;

} else {

    total = price * 0.98;

}

send();
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(Another) Simple Example

• Replace Magic Number with Symbolic Constant


double potentialEnergy(double mass, double height) { 
return mass * 9.81 * height; 

} 

• becomes this


double potentialEnergy(double mass, double height) { 
return mass * GRAVITATIONAL_CONSTANT * height; 

} 
static final double GRAVITATIONAL_CONSTANT = 9.81;

15
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Refactoring is thus Dangerous!

• Manager’s point-of-view


• If my programmers spend time “cleaning up the code” then that’s less 
time implementing required functionality (and my schedule is slipping 
as it is!)


• To address this concern


• Refactoring needs to be systematic, incremental, and safe
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Refactoring is Useful Too 

• The idea behind refactoring is to acknowledge that it will be difficult to get 
a design right the first time and, as a program’s requirements change, the 
design may need to change


• refactoring provides techniques for evolving the design in small 
incremental steps


• Benefits


• Often code size is reduced after a refactoring


• Confusing structures are transformed into simpler structures


• which are easier to maintain and understand
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A “cookbook” can be useful

• Refactoring: Improving the Design of Existing Code


• by Martin Fowler (and Kent Beck, John Brant, William Opdyke, and Don 
Roberts)


• Similar to the Gang of Four’s Design Patterns


• Provides “refactoring patterns”
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Principles in Refactoring

• Fowler’s definition


• Refactoring (noun)


• a change made to the internal structure of software to make it easier 
to understand and cheaper to modify without changing its 
observable behavior


• Refactoring (verb)


• to restructure software by applying a series of refactorings without 
changing its observable behavior
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Principles, continued

• The purpose of refactoring is


• to make software easier to understand and modify


• contrast this with performance optimization


• again functionality is not changed, only internal structure;


• however performance optimizations often involve making code harder 
to understand (but faster!)
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Principles, continued

• When you systematically apply refactoring, you wear two hats


• adding function


• functionality is added to the system without spending any time 
cleaning the code


• refactoring


• no functionality is added, but the code is cleaned up, made easier 
to understand and modify, and sometimes is reduced in size
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Principles, continued

• How do you make refactoring safe?


• First, use refactoring “patterns”


• Fowler’s book assigns “names” to refactorings for you to memorize 
and use


• Second, test constantly!


• This ties into the agile design paradigm


• you write tests before you write code


• after you refactor, you run the tests and check that they all pass


• if a test fails, the refactoring broke something but you know 
about it right away and can fix the problem before you move 
on
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Why should you refactor?

• Refactoring improves the design of software


• without refactoring, a design will “decay” as people make changes to a 
software system


• Refactoring makes software easier to understand


• because structure is improved, duplicated code is eliminated, etc.


• Refactoring helps you find bugs


• Refactoring promotes a deep understanding of the code at hand, and 
this understanding aids the programmer in finding bugs and 
anticipating potential bugs


• Refactoring helps you program faster


• because a good design enables progress
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When should you refactor?

• The Rule of Three


• Three “strikes” and you refactor


• refers to duplication of code


• Refactor when you add functionality


• do it before you add the new function to make it easier to add the 
function


• or do it after to clean up the code after the function is added


• Refactor when you need to fix a bug


• Refactor as you do a code review
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Problems with Refactoring

• Databases


• Business applications are often tightly coupled to underlying databases


• code is easy to change; databases are not


• Changing Interfaces (!!)


• Some refactorings require that interfaces be changed


• if you own all the calling code, no problem


• if not, the interface is “published” and can’t change


• Major design changes cannot be accomplished via refactoring


• This is why agile design says that software devs. need courage!
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Refactoring: Where to Start?

• How do you identify code that needs to be refactored?


• Fowler uses an olfactory analogy (attributed to Kent Beck)


• Look for “Bad Smells” in your code


• A very valuable chapter in Fowler’s book


• It presents examples of “bad smells” and then suggests refactoring 
techniques to apply
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Bad Smells in Code

• Duplicated Code


• bad because if you modify one instance of duplicated code but not the 
others, you (may) have introduced a bug!


• Long Method


• long methods are more difficult to understand


• performance concerns with respect to lots of short methods are 
largely obsolete


• Comments (!)


• Comments are sometimes used to hide bad code


• “…comments often are used as a deodorant” (!)
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Bad Smells in Code

• Shotgun Surgery


• a change requires lots of little changes in a lot of different classes


• Feature Envy 

• A method requires lots of information from some other class


• move it closer!


• Long Parameter List


• hard to understand, can become inconsistent if the same parameter 
chain is being passed from method to method
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Bad Smells in Code

• Primitive Obsession


• characterized by a reluctance to use classes instead of primitive data 
types


• Switch Statements


• Switch statements are often duplicated in code; they can typically be 
replaced by use of polymorphism (let OO do your selection for you!)


• Speculative Generality


• “Oh I think we need the ability to do this kind of thing someday”
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The Catalog

• The refactoring book has 72 refactoring patterns!


• I’m only going to cover a few of the more common ones, including


• Extract Method


• Replace Temp with Query


• Separate Query from Modifier


• Introduce Parameter Object


• Encapsulate Collection
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Extract Method

• You have a code fragment that can be grouped together


• Turn the fragment into a method whose name explains the purpose of 
the fragment


• Example, next slide
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Extract Method, continued

void printOwing(double amount) {
    printBanner()
    //print details
    System.out.println(“name: ” + _name);
    System.out.println(“amount: ” + amount);
}

=============================================

void printOwing(double amount) {
    printBanner()
    printDetails(amount)
}

void printDetails(double amount) {
    System.out.println(“name: ” + _name);
    System.out.println(“amount: ” + amount);
}
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Replace Temp with Query

• You are using a temporary variable to hold the result of an expression


• Extract the expression into a method;


• Replace all references to the temp with the expression.


• The new method can then be used in other methods


• Example, next slide
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Replace Temp with Query, continued

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
    return basePrice * 0.95;
else
    return basePrice * 0.98;

==============================

if (basePrice() > 1000)
    return basePrice() * 0.95;
else
    return basePrice() * 0.98;
…
double basePrice() {
    return _quantity * _itemPrice;
}
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Separate Query from Modifier

• Sometimes you will encounter code that does something like this


• getTotalOutstandingAndSetReadyForSummaries() 

• It is a query method but it is also changing the state of the object being 
called


• This change is known as a “side effect” because it’s not the primary 
purpose of the method


• It is generally accepted practice that queries should not have side effects 
so this refactoring says to split methods like this into:


• getTotalOutstanding() 

• setReadyForSummaries() 
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Introduce Parameter Object

• You have a group of parameters that go naturally together


• Stick them in an object and pass the object


• Imagine methods like


• amountInvoicedIn(start: Date; end: Date); 

• amountOverdueIn(start: Date; end: Date); 

• This refactoring says replace them with something like


• amountInvoicedIn(dateRange: DateRange) 

• The new class starts out as a data holder but will likely attract methods to 
it
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Encapsulate Collection

• A method returns a collection


• Make it return a read-only version of the collection and provide add/
remove methods


• Student class with


• getCourses(): Map; 

• setCourses(courses: Map); 

• Change to


• getCourses(): ReadOnlyList 

• addCourse(c : Course) 

• removeCourse(c : Course)

37
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Summary for Refactoring

• Refactoring is a useful technique for making non-functional changes to a 
software system that result in


• better code structures 

• Example: There’s a book out there called “Refactoring to Patterns”


• less code 

• Many refactorings are triggered via the discovery of duplicated code


• The refactorings then show you how to eliminate the duplication


• Bad Smells 

• Useful analogy for discovering places in a system “ripe” for refactoring
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Test-Driven Development (I)

• The idea is simple


• No production code is written except to make a failing test pass


• Implication


• You have to write test cases before you write code


• Note: use of the word “production”


• which refers to code that is going to be deployed to and used by real users


• It does not say: “No code is written except…”
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Test-Driven Development (II)

• This means that when you first write a test case, you may be testing code 
that does not exist


• And since that means the test case will not compile, obviously the test 
case “fails”


• After you write the skeleton code for the objects referenced in the test 
case, it will now compile, but also may not pass


• So, then you write the simplest code that will make the test case pass

40



© Kenneth M. Anderson, 2015

Example (I)

• Consider writing a program to score the game of bowling

• You might start with the following test


public class TestGame extends TestCase {

public void testOneThrow() {

Game g = new Game();

g.addThrow(5);

assertEquals(5, g.getScore());

}
}

• When you compile this program, the test “fails” because the Game class 
does not yet exist. But:

• You have defined two methods on the class that you want to use

• You are designing this class from a client’s perspective
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Example (II)

• You would now write the Game class

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 0;

}

}

• The code now compiles but the test will still fail: getScore() returns 0 not 5


• In Test-Driven Design, Beck recommends taking small, simple steps


• So, we get the test case to compile before we get it to pass
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Example (III)

• Once we confirm that the test still fails, we would then write the simplest code 
to make the test case pass; that would be


public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

}

• The test case now passes!
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Example (IV)

• But, this code is not very useful!


• Lets add a new test case to enable progress

public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game()
g.addThrow(5)
g.addThrow(4)
assertEquals(9, g.getScore());

}
}

• The first test passes, but the second case fails (since 9 ≠ 5)

• This code is written using JUnit; it uses reflection to invoke tests 

automatically
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Example (V)

• We have duplication of information between the first test and the Game 
class


• In particular, the number 5 appears in both places


• This duplication occurred because we were writing the simplest code to 
make the test pass


• Now, in the presence of the second test case, this duplication does 
more harm than good


• So, we must now refactor the code to remove this duplication
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Example (VI)

public class Game {

private int score = 0;

public void addThrow(int pins) {

score += pins;

}

public int getScore() {

return score;

}

}

46
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Example (VII)

• But now, to make additional progress, we add another test case to the 
TestGame class

…

public void testSimpleSpare() {

Game g = new Game()

g.addThrow(3); g.addThrow(7); g.addThrow(3);

assertEquals(13, g.scoreForFrame(1));

assertEquals(16, g.getScore());

}

…

• We’re back to the code not compiling due to scoreForFrame()

• We’ll need to add a method body for this method and give it the simplest 

implementation that will make all three of our tests cases pass
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TDD Life Cycle

• The life cycle of test-driven development is


• Quickly add a test


• Run all tests and see the new one fail


• Make a simple change


• Run all tests and see them all pass


• Refactor to remove duplication


• This cycle is followed until you have met your goal;


• note that this cycle simply adds testing to the “add functionality; refactor” 
loop covered in refactoring
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TDD Life Cycle, continued

• Kent Beck likes to perform TDD using 
a testing framework, such as JUnit.


• Within such frameworks


• failing tests are indicated with a 
“red bar”


• passing tests are shown with a 
“green bar”


• As such, the TDD life cycle is 
sometimes described as


• “red bar/green bar/refactor”
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JUnit: Red Bar...

• When a test fails:


• You see a red bar


• Failures/Errors are listed


• Clicking on a failure displays 
more detailed information 
about what went wrong
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Principles of TDD

• Testing List


• keep a record of where you want to go;


• Beck keeps two lists, one for his current coding session and one for 
“later”; You won’t necessarily finish everything in one go!


• Test First


• Write tests before code, because you probably won’t do it after


• Writing test cases gets you thinking about the design of your 
implementation;


• does this code structure make sense?


• what should the signature of this method be?
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Principles of TDD, continued

• Assert First


• How do you write a test case?


• By writing its assertions first!


• Suppose you are writing a client/server system and you want to test an 
interaction between the server and the client


• Suppose that for each transaction


• some string has to have been read from the server, and


• the socket used to talk to the server should be closed after the 
transaction


• Lets write the test case
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Assert First

public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now write the code that will make these asserts possible
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Assert First, continued

public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now you have a test case that can drive development

• if you don’t like the interface above for server and socket, then write a 

different test case

• or refactor the test case, after you get the above test to pass
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Principles of TDD, continued

• Evident Data

• How do you represent the intent of your test data

• Even in test cases, we’d like to avoid magic numbers; consider this rewrite 

of our second “times” test case

public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

• Replace the “magic numbers” with expressions
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Summary of Test Driven Development

• Test-Driven Development is a “mini” software development life cycle that 
helps to organize coding sessions and make them more productive


• Write a failing test case


• Make the simplest change to make it pass


• Refactor to remove duplication


• Repeat!
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