
XNA Game Studio
William Howard

CSCI 5448 – Fall 2012

CAETE

The XNA symbol is a registered trademark of Microsoft Corporation

 Everything in games is an object!

Why Object Oriented and Games?

 Camera

 World

 Input device (keyboard,
gamepad, mouse)

 Player

 Enemies

 Sound effects

 Music

 Splash screens

 Skybox

 Bullets

 Sprites

 Weapons

 Armor

 Backpacks

 Powerups

Game Objects

 Game loop

 User interaction

 Graphics

 Sound

Game elements

XNA Provides:

 An XNA game gets these methods out of the box:

 Initialize()

 LoadContent() - Graphics/Sound

 UnloadContent() - Graphics/Sound

 Update() - Game Loop/User Interaction

 Draw() - Graphics/User Interaction

 Extension of .Net Framework

 Visual Studio IDE (Primarily C#)

 Windows

 Windows 7 Phone

 XBOX 360

 Free to develop

 Create.msdn.com/gamedevelopment

About XNA

 Microsoft wanted a way to create games for Windows

 Needed a way to access the graphics hardware directly to
get the speeds necessary for games

 Microsoft created Windows Game SDK to provide game
API for Windows 95

 Changed to DirectX after a reporter poked fun at API
names DirectDraw, DirectSound, DirectPlay

 Hardware Extraction Layer (HAL) provided API to the
hardware drivers

 XNA began as a wrapper for DirectX 9.0

History of XNA

 Collision detection

 Bounding rectangles (each object)

 Loading and storing Xml files

 Networking

 Forums support (forums.create.msdn.com)

XNA Provides Help With:

 XNA Content Pipeline makes loading assets easy

 Content.load(“file”)

 Group drawable sprites to increase efficiency

 spriteBatch.Begin()

 Makes getting input easy

 KeyboardState

 GamePadState

 TouchPanel

XNA

 Microsoft.Xna.Framework
 Microsoft.Xna.Framework.Audio
 Microsoft.Xna.Framework.Content
 Microsoft.Xna.Framework.Design
 Microsoft.Xna.Framework.GamerServices
 Microsoft.Xna.Framework.Graphics
 Microsoft.Xna.Framework.Graphics.PackedVector
 Microsoft.Xna.Framework.Input
 Microsoft.Xna.Framework.Input.Touch
 Microsoft.Xna.Framework.Media
 Microsoft.Xna.Framework.Net
 Microsoft.Xna.Framework.Storage

XNA Namespaces

 Provides commonly needed game classes such as
timers and game loops

 GameComponent - Base class for all XNA Framework game
components.

 GameTime – Allows the developer to keep track of real-time or game-time
in their games.

 Structures:
 BoundingBox

 Vector2

 Vector3

Microsoft.Xna.Framework

 ContentManager - The ContentManager is the run-time component

which loads managed objects from the binary files produced by the design time
content pipeline. It also manages the lifespan of the loaded objects, disposing
the content manager will also dispose any assets which are themselves
IDisposable.

 Content Manager enables developers to easily upload different asset formats
without having to worry about the specific format. Simply provide a file, and let
XNA worry about what type it is!

Microsoft.Xna.Framework.Content

 GamerServices provides a way for the developer to
access information about a user’s XBOX Live account

 Gamer - Abstract base class for types that represent game players (profiles

that have an associated gamertag).

 GamerProfile - Profile settings describing information about a gamer such

as the gamer's motto, reputation, and gamer picture. This data is accessible for
both locally signed in profiles and remote gamers that you are playing with in a
multiplayer session.

Microsoft.Xna.Framework.GamerServices

 GamePad - Allows retrieval of user interaction with an Xbox 360 Controller

and setting of controller vibration motors.

 Keyboard - Allows retrieval of keystrokes from a keyboard input device.

 Mouse - Allows retrieval of position and button clicks from a mouse input

device.

Microsoft.Xna.Framework.Input

 Contains classes that enable access to touch-based
input on devices that support it.

 TouchPanel - Provides methods for retrieving touch panel device

information.

Microsoft.Xna.Framework.Input.Touch

 .Net Framework managed heap (Windows)

 3 generations

 .Net Compact Framework (Xbox 360, Windows
Phone)

 1 generation

XNA Garbage Collection

According to Microsoft:
The .NET Framework is designed to fulfill the following objectives:
 To provide a consistent object-oriented programming environment whether object

code is stored and executed locally, executed locally but Internet-distributed, or
executed remotely.

 To provide a code-execution environment that minimizes software deployment and
versioning conflicts.

 To provide a code-execution environment that promotes safe execution of code,
including code created by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance problems
of scripted or interpreted environments.

 To make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

 To build all communication on industry standards to ensure that code based on the
.NET Framework can integrate with any other code.

.Net Framework

 Whew! That’s a lot of words!

 Basically what it’s saying is that Microsoft wanted to
create a consistent and secure development
environment where developers can use the same
framework across languages and application uses.

 While there are of course differences in the
languages, it is easier to switch between them
because you don’t have to relearn a new
environment.

.Net Framework

 Two types of objects: reference and value

 Value – enums, integer, bool, etc.

 Reference – arrays, classes, attributes, etc.

.Net Objects

 Enable data hiding
 Accessor methods hide the implementation of the

property

 Referenced the same way a field would be, and getter
and setter methods are hidden from the user

 ‘Value’ is keyword in property definition
 ‘Value’ is assigned to the property in the calling code

 By convention, fields begin with lower-case, properties
begin with upper-case.

.Net Properties

public class SimpleProperty

{

 private int number = 0;

 public int MyNumber

 {

 // Retrieves the data member number.

 get { return number; }

 // Assigns to the data member number.

 set { number = value; }

 }

}

public class UsesSimpleProperty

{

 public static void Main()

 {

 SimpleProperty example = new SimpleProperty();

 // Sets the property.

 example.MyNumber = 5;

 // Gets the property.

 int anumber = example.MyNumber;

 }

 }

.Net Properties Example

 .Net Provides a simple way to save and retrieve data
for your game using
System.runtime.serialization.formatter.binary

 This saves data in a binary format that allows storage
or transmission across a network

 Fast and efficient, but may not work with other
serializers

Saving Data

 Because everything in a game is an object, Object
Oriented programming is the perfect choice for
creating games

 Microsoft XNA provides a great set of abstractions to
deal with game objects

 Frameworks like XNA give independent developers a
fighting chance to actually write their own games

Conclusion

 Msdn.microsoft.com

 Create.msdn.com/gamedevelopment

 Chad Carter, Microsoft XNA Game Studio 3.0
Unleashed

 Kurt Jaegers, XNA 4.0 Game Development by
Example

 Jim Perry, RPG Programming using XNA Game Studio
3.0

References

 Clip art provided by Microsoft

 Trashcan icon provided by iCLIPART

 Game Flow Chart is from
Create.msdn.com/gamedevelopment

 Demo graphics provided by:

 Reiner “Tiles” Prokein - http://www.reinerstilesets.de/

References

