
Ready for the Real World

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 8 — 09/17/2009

1

Lecture Goals

• Review material from Chapter 4 of the OO A&D textbook

• Taking Your Software into the Real World

• Alternative Designs / Design Trade-Offs

• Use Case Analysis / More about Class Diagrams

• Discuss the Chapter 4 Example: Todd & Gina’s Dog Door, Take 3

• Emphasize the OO concepts and techniques encountered in Chapter 4

2

Quiz (from last time)

• Draw a UML class diagram that captures the following relationships

• The world is a matrix of locations. Each location is a particular type of
terrain (water, grass, forest, mountain) and may have the player on it or one
or more creatures. A player can either be a warrior or a wizard. A warrior
has access to one or more weapons, each that deal different amounts of
damage and that have different ranges (e.g., a bow can attack a creature
that is five squares or closer). A wizard has access to one or more spells,
each that deal different amounts of damage, have different ranges, and
that might linger for one or more turns. A creature has a description and
two attacks, one melee and one ranged, that deal different amounts of
damage. Both creatures and players have a certain number of hit points
and know their current location in the world.

3

One Student Submission!

4

My attempt

5

x: Integer
y: Integer

Location

Mountain

WaterGrass

Forest

Worldx, y x: Integer
y: Integer
hitPoints: Integer

Entity

range: Integer
duration: Integer

Attack
min: Integer
max: Integer

Damage

Player description: String
Creature

Warrior Wizard

ranged

melee

* *

A location can be empty,
contain a single player or one

or more creatures

spellsweapons

An alternative…

6

x: Integer
y: Integer

Location

Mountain

WaterGrass

Forest

Worldx, y hitPoints: Integer
Entity

range: Integer
duration: Integer

Attack
min: Integer
max: Integer

Damage

Player description: String
Creature

Warrior Wizard

ranged

melee

* *

A location can be empty,
contain a single player or one

or more creatures

spellsweapons

*
0..1

Quiz

7

• What are the steps of a use case called?

• What guideline (or guidelines) does this action step violate

• “The systems gets the data and checks to see if its valid”

• What are the semantics of an unadorned association between two classes?

• Why does the addition of directionality and/or multiplicity make it harder to
implement an association?

Quiz

8

• What are the steps of a use case called?

• action steps

• What guideline (or guidelines) does this action step violate

• “The systems gets the data and checks to see if its valid”

• Write from a Bird’s Eye View and Do not use “checks whether”

• What are the semantics of an unadorned association between two classes?

• Multiplicity of 1 on each end; directionality in both directions

• Why does the addition of multiplicity constraints make it more difficult to
implement an association?

• Multiplicity constraints must be maintained at run-time

Real World Context

• A key problem in software development is gaining an understanding of the
context in which your software must operate

• Chapter 4 starts out by identifying a problem with our bark recognizer
software from the end of Chapter 3: It opens for ANY bark… even if the
bark belongs to some other dog!

• In the perfect world, everyone uses your system just like you expect

• As the book says “Everyone is relaxed and there are no multi-dog
neighborhoods here!”

• In the real world, (unexpected) stuff happens and things go wrong

• Analysis is the tool that can help you understand your software’s real-world
context, identify potential problems, and help you avoid them

9

The Role of Use Cases

• A well written use case can aid us in our goal of identifying real-world
problems during the analysis phase

• They are your means of communicating with your customers, your
managers, and other developers about how your system will work in the
real world

• A customer may look at your scenarios and say “these are not very
realistic”

• Be open to comments like this, because you can then learn how to
change your use cases to take into account the problems that will be
encountered in the real world

• Once your use cases are updated, you can use them to glean the new
requirements your system has to meet

10

Initial Changes

• Make use case more generic

• We’ve been a bit “folksy” up to now, referring to “Todd and Gina” and
“Fido” in our use case

• We’ll switch to using phrases like “owner” and “dog”

• Except that in Boulder, we have to say “guardian” not “owner” ☺
• We’ll update the use case to make sure that we specify that the bark

recognizer opens the door ONLY for the “owner’s dog”

• We were playing fast and loose with requirements last time

• looking at what we needed to do to introduce BarkRecognizer to our
design, without thinking long and hard about what it really needed to do

11

New Use Case

12

What the Door Does

Main Path
1. The owner’s dog barks to be let out.
2. The bark recognizer “hears” a bark.
3. The bark recognizer detects the
owner’s dog and opens the door.
4. The dog door opens.
5. The owner’s dog goes outside.
6. The owner’s dog does his business.

6.1 The door shuts automatically
6.2 Fido barks to be let back inside.
6.3 The bark recognizer “hears” a
bark (again).
6.4 The bark recognizer detects the
owner’s dog and opens the door
6.5 The dog door opens (again).

7. Fido goes back inside.

Alternate Paths

2 The owner hears her dog barking.
3 The owner presses the button on the
remote control.

6.3 The owner hears her dog barking
(again).
6.4 The owner presses the button on
the remote control.

Discussion

• Note: I did things slightly differently from the book

• I changed step 3 to say “The bark recognizer detects the owner’s dog and
opens the door”

• The book said “If it’s the owner’s dog barking, the bark recognizer sends a
request to the door to open”

• I didn’t like the use of “if” in this action step, instead I just decided that
the bark we hear is always the owner’s dog.

• I can add an additional path to this use case in which I can say
something like: “The bark recognizer detects an unknown dog. Use
case terminates.” Or I can create a separate use case that documents
this behavior

• Note: my version of step 3 can be further improved by splitting it into two
steps: one that does the detection and one that asks for the door to open

13

New Use Case

• If the bark recognizer is going to determine if a bark belongs to the owner’s
dog, we need to store a representation of that dog’s bark

• This may seem like its “not enough”:

• Pros: simple, primary actor should be dog in this use case

• Cons: It feels a bit weird not to have a step that says something like “The
owner issues a command to the door to prepare it to store the dog’s bark”

• But since that step sounds awkward, make it a precondition

14

Storing a dog bark
1. The owner’s dog barks “into” the door.
2. The door stores the owner’s dog’s bark.

The Competition

• The book now holds a design competition between two programmers

• Randy: simple is best right?

• Bark sounds are just strings… I’ll store the owner’s dog’s bark in the
dog door and then just do a string comparison in bark recognizer

• Sam: object lover extraordinaire

• A “bark” is an important concept in our application domain. Lets make
it a class and have it take care of “bark comparison”

15

Discussion

• Randy’s approach

• Agile approach to software development

• What is the simplest thing I can do today to meet my requirements?

• Avoids “speculative complexity”

• Fast: doesn’t take long to modify the DogDoor class and update the
BarkRecognizer to do the appropriate string comparison

• Sam’s approach

• Makes use of good OO design principles

• Encapsulation and Delegation

• A “bark” is something we need to track ⇒ it should be a class

• Barks are strings now; But what if they turn into .wav files?

• Use delegation to hide those details from the rest of the system

16

Original Class Diagram

recognize(bark: string)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean

open: boolean
DogDoor

door door

DogDoorSimulator

17

18

:DogDoorSimulator

:DogDoor

:BarkRecognizer

:Remote

:System.out

«create»

«create»

«create»

println("Fido starts barking.")

recognize("Woof")
println("BarkRecognizer: Heard a 'Woof'.")

open()

println("The dog door opens.")

«create»
:Timer

schedule()
sleep(5000)

println("Fido has gone outside...")

println("Fido's all done...")

sleep(10000)
close()

println("The dog door closes.")

println("...but he's stuck outside!")

println("Fido starts barking.")

recognize("Woof")
Insert another copy of the

interaction shown above here

println("Fido's back inside...")

Behavior of Original System

Introduction to Sequence Diagrams

• Objects are shown across the top of the diagram

• Objects at the top of the diagram existed when the scenario begins

• All other objects are created during the execution of the scenario

• Each object has a vertical dashed line known as its lifeline

• When an object is active, the lifeline has a rectangle placed above its
lifeline

• If an object dies during the scenario, its lifeline terminates with an “X”

• Messages between objects are shown with lines pointing at the object
receiving the message

• The line is labeled with the method being called and (optionally) its
parameters

• All UML diagrams can be annotated with “notes”

• Sequence diagrams can be useful, but they are also labor intensive (!)

19

Randy’s Class Diagram

BarkRecognizer’s recognize() method has been updated to
call getAllowedBark() and check to see if it matches the bark
passed to it

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean
getAllowedBark(): String
setAllowedBark(bark: String)

open: boolean
allowedBark: String

DogDoor

door door

DogDoorSimulator

20

Sam’s Class Diagram

recognize(bark: Bark)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean
getAllowedBark(): Bark
setAllowedBark(bark: Bark)

open: boolean
DogDoor

door door

DogDoorSimulator

getSound() : String
equals(Object bark): boolean

sound: String
Bark

allowedBark

recognize() delegates
comparison to the
Bark equals() method

21

The Power of Delegation

• Sam’s application is shielded from the details of how a “bark” is implemented

• By using delegation to do the comparison of bark objects, his
BarkRecognizer doesn’t have to know that internally a bark is represented
as a String

• If we change the way a bark is represented, BarkRecognizer will be
unaffected

• Contrast with an alternative approach of BarkRecognizer calling the
getSound() method of its two Bark objects and then doing a comparison
itself; BarkRecognizer would then be tied to the implementation of the
Bark class

• Delegation shields your objects from implementation changes to other
objects in your software

• The coupling between Bark and BarkRecognizer is looser having used
delegation; there is still some coupling between them, but its not tight

22

The Results

• Sam’s and Randy’s solutions both work but both of them lost the competition!

• They lost to a summer intern (and “junior” programmer), Maria

• Why?

• She did a deeper analysis of the problem domain and identified a problem
that both Sam and Randy ignored

• The same dog can have different types of barks!

• when its excited, sleepy, hungry, angry, scared, etc.

• Sam’s and Randy’s solutions would both fail in the real world

• Maria succeeded because she applied textual analysis to the use case

• She realized that it was the dog that was the focus, not the bark

23

Textual Analysis

• Pay attention to the nouns in your use case

• They may indicate a potential candidate for a class in your system

• Some things don’t need to be tracked

• For example, we don’t need a class for “Dog” in this system

• They also provide hints on what your design should focus on

• Pay attention to the verbs in your use case as well

• They may indicate potential candidates for methods in your system

• They will also provide hints as to where a method should “live”

• i.e. what class should be assigned the responsibility of handling the
service provided by the method

24

Soft Science?

• The book discusses the potential problems with textual analysis

• Wouldn’t a slightly different wording of the use case lead to different
results?

• Yep

• But, as they point out, only one or two wordings will accurately capture the
real-world context that your system will find itself in

• If you get your analysis wrong, you’ll end up focused on the wrong
thing, and even if your design is good, your system will fail

• Also, “everyone does it”: this technique shows up in all OO A&D methods

• A good use case clearly and accurately explains what a system does, in
language that’s easily understood with real world context captured

• With a good use case, complete textual analysis is a quick and easy way to
identify the potential classes and methods of your system

25

Maria’s Class Diagram

recognize(bark: Bark)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean
getAllowedBarks(): Bark [*]
addAllowedBark(bark: Bark)

open: boolean
DogDoor

door door

DogDoorSimulator

getSound() : String
equals(Object bark): boolean

sound: String
Bark

allowedBark
*

26

New Notation

• In Maria’s class diagrams in the book, you encountered a new notation

• For Attributes

• allowedBarks: Bark [*]

• For Methods

• getAllowedBarks(): Bark [*]

• (actually, its just a new type notation)

• It means that the type of allowedBarks and the return type of
getAllowedBarks() is a collection of zero or more Bark objects

• You can indicate a specific multiplicity like this

• allowedBarks: Bark [2..6] or allowedBarks: Bark [20]

27

Demonstration

• Lets take a look at the final version of the software

28

Class Diagrams are Incomplete

• Class diagrams are useful but they do not provide a complete picture

• They provide limited type information

• Types are optional, and when a type specifies a multiplicity it does not
indicate what collection class should be used

• They don’t tell you how to code a method

• You’ll need a use case or sequence diagram for that

• They almost never talk about constructors

• They do not provide information on how associations are instantiated

• They don’t provide explicit information on the purpose of a class

• That info comes from its associated requirements and use cases

• They are horrible at specifying constraints that span multiple classes

29

30

accountNumber

Bank

income(Date): Integer

isMarried: Boolean
isUnemployed: Boolean
birthDate: Date
age: Integer
firstName: String
lastName: String
gender: Gender

Person

0..1

*
customer

stockPrice(): Double

name: String
numberOfEmployees: Integer

Company

*
1

manager

managedCompanies

employer

employee

*

*

title: String
startDate: Date
endDate: Date
salary: Integer

Job

wife

0..1

0..1husband

startDate: Date
endDate: Date

Marriage

Note: new notations:
 Role Names
 Association Classes

Multi-Class Constraints

Is the Manager of a Company also an Employee?
Can the Wife and Husband of a Marriage be the
same Person? Same Gender?
Can two people with the same job title at the same
company have different salaries?

31

OCL to the Rescue!

• To handle the problem of constraints that span multiple classes, a designer
can make use of the object constraint language

• OCL version 2.0 specification located here:

• <http://www.omg.org/docs/ptc/05-06-06.pdf>

• Essentially defines a first-order predicate logic that has its domain in UML
models; you can construct statements like

• All Persons employed by Company X with Job title Y have salary Z

• For all Persons X, manager(X, Company) and employee(X, Company)

• etc.

• You can then annotate UML models with OCL constraints using notes

• Example of “note” shown on slide 12

• Knowledge of OCL is NOT required for this class

http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/ptc/05-06-06.pdf

Wrapping Up

• Systems fail if their developers failed to take into account the problems that
they will encounter in the real world

• Its tough to model the real world accurately but it can be done

• if you are willing to expend the effort to create good use cases

• A good use case precisely lays out what a system does, but does not
indicate how the system accomplishes that task

• Textual analysis can provide you with information on the candidate classes
and methods of your system

• they also indicate where to focus when creating the design of your system

• get the use case wrong, and you’ll focus on the wrong thing

32

Coming Up Next

• Lecture 9: Nothing Stays the Same

• Read Chapter 5 (part 1 and interlude) of the OO A&D book

• Lecture 10: Flexible Software

• Read Chapter 5 (part 2) of the OO A&D book

33

