
Object Fundamentals
Part Three

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 4 — 09/03/2009

1

Lecture Goals

• Continue our tour of the basic concepts, terminology, and notations for
object-oriented analysis, design, and programming

• Some material for this lecture is drawn from Head First Java by Sierra &
Bates, © O'Reilly, 2003

2

Overview

• Delegation

• HAS-A

• Inheritance

• IS-A

• Polymorphism

• message passing

• polymorphic arguments and
return types

• Interfaces

• Abstract Classes

• Object Identity

• Code Examples

3

Delegation (I)

• When designing a class, there are three ways to handle an incoming message

• Handle message by implementing code in a method

• Let the class’s superclass handle the request via inheritance

• Pass the request to another object (delegation)

• Note: goes hand in hand with composition (not to be confused with
aggregation/composition which is a design concept)

• You compose one object out of others

• The host object delegates requests to its internal objects

4

Delegation (II)

• Delegation is employed when some other class already exists to handle a
request that might be made on the class being designed

• The host class simply creates a private instance of the helper class and
sends messages to it when appropriate

• As such, delegation is often referred to as a “HAS-A” relationship

• A Car object HAS-A Engine object

5

• Here is an example of a class delegating a responsibility to another class

• Grocery List has an attribute called items and it delegates all of its work-
related tasks (storing/enumerating items) to it.

Simple Example (I)

6

Extremely lame sorted list class; lame because it only
defines the list methods needed by the example code below
class SortedList(object):

 def __init__(self, source_list):
 self.sorted_list = sorted(list(source_list))

 def append(self, item):
 self.sorted_list.append(item)
 self.sorted_list = sorted(self.sorted_list)

 def __iter__(self):
 return self.sorted_list.__iter__()

GrocerList delegates to an internal list object called items
class GroceryList(object):

 def __init__(self, items):
 self.items = items

 def add_item(self, item):
 self.items.append(item)

 def print_items(self):
 for i, item in enumerate(self.items):
 print("{0}. {1}".format(i+1, item))

we start by creating a grocery list that just uses python's default list
object as the object that it delegates to.

my_list = GroceryList([])

we add items

my_list.add_item("milk")
my_list.add_item("bread")
my_list.add_item("snickers")
my_list.add_item("fish")

we print them out
print("")
print("Unsorted: ")
print("")
my_list.print_items()
print("")

now we create a sorted list that contains our grocery list
and we change our grocery list object to now delegate to this
sorted list. And this shows that we can change delegation relationships
at runtime

my_list.items = SortedList(my_list.items)

lets add new items to our list
my_list.add_item("wine")
my_list.add_item("cheese")

we print out the list again; this time the items appear in sorted order
print("")
print("Sorted: ")

• We can create a GroceryList using a python list object like this:

• Now imagine, we no longer liked the capabilities of the default list and we
wanted to switch to another class, for example, a list that keeps its items
sorted

• This line is creating a new sorted list, passing in the current set of items, and
setting GroceryList.items to the new sorted list. This is an example of a
delegation relationship changing at runtime.

Simple Example (II)

7

Extremely lame sorted list class; lame because it only
defines the list methods needed by the example code below
class SortedList(object):

 def __init__(self, source_list):
 self.sorted_list = sorted(list(source_list))

 def append(self, item):
 self.sorted_list.append(item)
 self.sorted_list = sorted(self.sorted_list)

 def __iter__(self):
 return self.sorted_list.__iter__()

GrocerList delegates to an internal list object called items
class GroceryList(object):

 def __init__(self, items):
 self.items = items

 def add_item(self, item):
 self.items.append(item)

 def print_items(self):
 for i, item in enumerate(self.items):
 print("{0}. {1}".format(i+1, item))

we start by creating a grocery list that just uses python's default list
object as the object that it delegates to.

my_list = GroceryList([])

we add items

my_list.add_item("milk")
my_list.add_item("bread")
my_list.add_item("snickers")
my_list.add_item("fish")

we print them out
print("")
print("Unsorted: ")
print("")
my_list.print_items()
print("")

now we create a sorted list that contains our grocery list
and we change our grocery list object to now delegate to this
sorted list. And this shows that we can change delegation relationships
at runtime

my_list.items = SortedList(my_list.items)

lets add new items to our list
my_list.add_item("wine")
my_list.add_item("cheese")

we print out the list again; this time the items appear in sorted order
print("")
print("Sorted: ")

Extremely lame sorted list class; lame because it only
defines the list methods needed by the example code below
class SortedList(object):

 def __init__(self, source_list):
 self.sorted_list = sorted(list(source_list))

 def append(self, item):
 self.sorted_list.append(item)
 self.sorted_list = sorted(self.sorted_list)

 def __iter__(self):
 return self.sorted_list.__iter__()

GrocerList delegates to an internal list object called items
class GroceryList(object):

 def __init__(self, items):
 self.items = items

 def add_item(self, item):
 self.items.append(item)

 def print_items(self):
 for i, item in enumerate(self.items):
 print("{0}. {1}".format(i+1, item))

we start by creating a grocery list that just uses python's default list
object as the object that it delegates to.

my_list = GroceryList([])

we add items

my_list.add_item("milk")
my_list.add_item("bread")
my_list.add_item("snickers")
my_list.add_item("fish")

we print them out
print("")
print("Unsorted: ")
print("")
my_list.print_items()
print("")

now we create a sorted list that contains our grocery list
and we change our grocery list object to now delegate to this
sorted list. And this shows that we can change delegation relationships
at runtime

my_list.items = SortedList(my_list.items)

lets add new items to our list
my_list.add_item("wine")
my_list.add_item("cheese")

we print out the list again; this time the items appear in sorted order
print("")
print("Sorted: ")

Delegation (III)

• Advantages

• Delegation is dynamic (not static)

• delegation relationships can change at run-time

• Not tied to inheritance (indeed, considered much more flexible)

• In languages that support only single inheritance this is important!

8

Inheritance (I)

• Inheritance is a mechanism for sharing (public/protected) features between
classes

• A class defines a type.

• A superclass is a more generic instance of that type.

• A subclass is a more specific instance of that type.

• A subtype typically restricts the legal values of its superclass

• Real Numbers → Integers → Positive Integers

• Component → Container → Control → Button → Checkbox

9

Inheritance (II)

• Subclasses have an “IS-A” relationship with their superclass

• A Hippo IS-A Animal makes sense while the reverse does not

• IS-A relationships are transitive

• If D is a subclass of C and C is a subclass of B, then D IS-A B is true

• Good OO design strives to make sure that all IS-A relationships in a software
system “make sense”

• Consider Dog IS-A Canine vs. Dog IS-A Window

• The latter might actually be tried by an inexperienced designer who
wants to display each Dog object in its own separate window

• This is known as implementation inheritance; it is considered poor
design and something to be avoided

10

Inheritance (III)

• Inheritance enables significant code reuse since subclasses gain access to
the code defined in their ancestors

• The next two slides show two ways of creating a set of classes modeling
various types of Animals

• The first uses no inheritance and likely contains a lot of duplicated code

• The second uses inheritance and would likely require less code

• even though it has more classes than the former

11

Animals (No Inheritance)

Lion

makeNoise()

roam()

sleep()

Cat

makeNoise()

roam()

sleep()

Tiger

makeNoise()

roam()

sleep()

Hippo

makeNoise()

roam()

sleep()

Elephant

makeNoise()

roam()

sleep()

Rhino

makeNoise()

roam()

sleep()

Dog

makeNoise()

roam()

sleep()

Wolf

makeNoise()

roam()

sleep()

12

Animals (With Inheritance)

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

13

Code Metrics

• Indeed, I coded these two examples and discovered

• without inheritance: 9 files, 200 lines of code

• with inheritance: 13 files, 167 lines of code

• approximately a 15% savings, even for this simple example

14

Inheritance (IV)

• An important aspect of inheritance is substitutability

• Since a subclass can exhibit all of the behavior of its superclass, it can be
used anywhere an instance of its superclass is used

• The textbook describes this as polymorphism

• Furthermore, subclasses can add additional behaviors that make sense for
it and override behaviors provided by the superclass, altering them to suit its
needs

• This is both powerful AND dangerous

• Why? Stay tuned for the answer…

15

Polymorphism (I)

• OO programming languages support polymorphism (“many forms”)

• In practice, this allows code

• to be written with respect to the root of an inheritance hierarchy

• and function correctly when applied to the root’s subclasses

16

Polymorphism (II)

• Message Passing vs. Method Invocation

• With polymorphism, a message ostensibly sent to a superclass, may be
handled by a subclass

• Compare this

Animal a = new Animal()

a.sleep() // sleep() in Animal called

• with this

Animal a = new Lion()

a.sleep() // sleep() in Lion called

17

Polymorphism Example

• Without polymorphism, the code on
the right only calls methods in Animal

• Think C++ non-virtual method
invocations

• With polymorphism

• a.roam() invokes Feline.roam()

• a.makeNoise() invokes
Lion.makeNoise()

• A message sent to Animal travels
down the hierarchy looking for the
“most specific” method body

• In actuality, method lookup starts
with Lion and goes up

Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

18

Why is this important?

• Polymorphism allows us to write very abstract code that is robust with
respect to the creation of new subclasses

• For instance

public void goToSleep(Animal[] zoo) {
 for (int i = 0; i < zoo.length; i++) {
 zoo[i].sleep();
 }
}

19

Importance (II)

• In the previous code

• we don’t care what type of animals are contained in the array

• we just call sleep() and get the correct behavior for each type of animal

• Indeed, if a new subclass of animal is created

• the above code still functions correctly AND

• it doesn’t need to be recompiled

• with dynamic class loading, if the above code was running in a server, you
wouldn’t even need to “stop the server”; you could simply load a new

subclass and “keep on trucking” ☺
• It only cares about Animal, not its subclasses

• as long as Animal doesn’t change, the addition/removal of Animal
subclasses has no impact

20

Importance (III)

• We can view a class’s public methods as establishing a contract that it and
its subclasses promise to keep

• if we code to the (root) contract, as we did in the previous example, we
can create very robust and easy to maintain software systems

• This perspective is known as design by contract

21

Importance (IV)

• Earlier, we referred to method overloading as “powerful AND dangerous”

• The danger comes from the possibility that a subclass may change the
behavior of a method such that it no longer follows the contract
established by a superclass

• such a change will break previously abstract and robust code

22

Importance (V)

• Consider what would happen if an Animal subclass overrides the sleep()
method to make its instances flee from a predator or eat a meal

• Our goToSleep() method would no longer succeed in putting all of the
Zoo’s animals to sleep

• If we could not change the offending subclass, we would have to modify the
goToSleep() method to contain special case code to handle it

• this would break abstraction and seriously degrade the maintainability of
that code

• Why?

23

Polymorphism (III)

• Finally, polymorphism is supported in arguments to methods and method
return types

• In our goToSleep() method, we passed in a polymorphic argument, namely
an array of Animals

• The code doesn’t care if the array contains Animal instances or any of
its subclasses

24

Polymorphism (IV)

• In addition, we can create methods that return polymorphic return values. For
example

• When using the createRandomAnimal() method, we don’t know ahead of time
which instance of an Animal subclass will be returned

• That’s okay as long as we are happy to interact with it via the API provided
by the Animal superclass

public Animal createRandomAnimal() {
 // code that randomly creates and
 // returns one of Animal's subclasses
}

25

Abstract Classes/Interfaces

• There are times when you want to make the “design by contract” principle
explicit

• Abstract classes and Interfaces let you do this

• An abstract class is simply one which cannot be directly instantiated

• It is designed from the start to be subclassed

• It does this by declaring a number of method signatures without providing
method implementations for them

• this sets a contract that each subclass must meet

26

Abstract Classes, Continued

• Abstract classes are useful since

• they allow you to provide code for some methods (enabling code reuse)

• while still defining an abstract interface that subclasses must implement

• Zoo example

• Animal a = new Lion(); // manipulate Lion via Animal

• Animal a = new Animal(); // what Animal is this?

• Animal, Feline, Pachyderm, and Canine are good candidates for being
abstract classes

27

Interfaces

• Interfaces go one step further and only allow the declaration of abstract
methods

• you cannot provide method implementations for any of the methods
declared by an interface

• Interfaces are useful when you want to define a role in your software system
that could be played by any number of classes

28

Interface Example

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet-related methods to Animal

• add abstract Pet methods to Animal

• add Pet methods only in the classes they belong (no explicit contract)

• make a separate Pet superclass and have pets inherit from both Pet
and Animal

• make a Pet interface and have only pets implement it

• This often makes the most sense although it hinders code reuse

• Variation: create Pet interface, but then create Pet helper class that
is then composed internally and Pet’s delegate if they want the
default behavior

29

Object Identity
• In OO programming languages, all objects have a unique id

• This id might be its memory location or a unique integer assigned to it
when it was created

• This id is used to enable a comparison of two variables to see if they point
at the same object

• See example next slide

30

Identity Example

public class identity {

 public static void compare(String a, String b) {

 if (a == b) {

 System.out.println("(" + a + ", " + b + "): identical");

 } else if (a.equals(b)) {

 System.out.println("(" + a + ", " + b + "): equal");

 } else {

 System.out.println("(" + a + ", " + b + "): not equal");

 }

 }

 public static void main(String[] args) {

 String ken = "Ken Anderson";

 String max = "Max Anderson";

 compare(ken, max);

 ken = max;

 compare(ken, max);

 max = new String("Max Anderson");

 compare(ken, max);

 }

}

Not Equal

Identical

Equal

31

Identity in OO A&D (I)

• Identity is also important in analysis and design

• We do not want to create a class for objects that do not have unique
identity in our problem domain

• Consider people in an elevator

• Does the elevator care who pushes its buttons?

• Consider a cargo tracking application

• Does the system need to monitor every carrot that exists inside a
bag? How about each bag of carrots in a crate?

• Consider a flight between Denver and Chicago

• What uniquely identifies that flight? The plane? The flight number?
The cities? What?

32

Identity in OO A&D (II)

• When doing analysis, you will confront similar issues

• you will be searching for uniquely identifiable objects that help you solve
your problem

33

Ken’s Corner (I)

• Big names in OO circles (this list is dreadfully incomplete)

• Alan Kay: <http://en.wikipedia.org/wiki/Alan_Kay>

• One of the “fathers” of OO programming

• Grady Booch: <http://en.wikipedia.org/wiki/Grady_Booch>

• Co-inventor of UML; long time advocate of OO A&D

• Ivar Jacobson: <http://en.wikipedia.org/wiki/Ivar_Jacobson>

• Co-inventor of UML; wrote OO software engineering

• James Rumbaugh: <http://en.wikipedia.org/wiki/James_Rumbaugh>

• Co-inventor of UML; developed Object Modeling Technique (OMT)

• Martin Fowler <http://www.martinfowler.com/>

• Prolific author on OO topics such as refactoring, patterns, UML, etc.

“Three Amigos”

34

http://en.wikipedia.org/wiki/Alan_Kay
http://en.wikipedia.org/wiki/Alan_Kay
http://en.wikipedia.org/wiki/Grady_Booch
http://en.wikipedia.org/wiki/Grady_Booch
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/James_Rumbaugh
http://en.wikipedia.org/wiki/James_Rumbaugh
http://www.martinfowler.com
http://www.martinfowler.com

Ken’s Corner (II)

• Big names in OO circles (this list is still dreadfully incomplete)

• Kent Beck: <http://en.wikipedia.org/wiki/Kent_Beck>

• Inventor of Extreme Programming; popularized test-driven design/JUnit

• Ward Cunningham: <http://en.wikipedia.org/wiki/Ward_Cunningham>

• Inventor of the wiki; long time advocate for design patterns

• Erich Gamma: <http://en.wikipedia.org/wiki/Erich_Gamma>

• Wrote Design Patterns with “The Gang of Four (GoF)” which also
includes Richard Helm, Ralph Johnson, John Vlissides

• Many, many more… for instance, the designers of OO languages: Alan Kay
(Smalltalk), Bjarne Stroustrup (C++), Guido van Rossum (Python), Yukihiro
Matsumoto “Matz” (Ruby), Anders Hejlsberg (C#), Brad Cox (Objective C),
Brendan Eich (Javascript), Bertrand Meyer (Eiffel); See <http://
en.wikipedia.org/wiki/Object-oriented_programming_language> for more!

35

http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Gang_of_Four_(software)
http://en.wikipedia.org/wiki/Gang_of_Four_(software)
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language

Coming Up Next

• Lecture 5: Great Software

• Read Chapter 1 of the OO A&D book

• Lecture 6: Give Them What They Want

• Read Chapter 2 of the OO A&D book

36

