Object Fundamentals

Part

WO

Kenneth M. Anderson
University of Colorado, Boulder
CSCl 4448/5448 — Lecture 3 — 09/01/2009



L ecture Goals

e Continue our tour of the basic concepts, terminology, and notations for
object-oriented analysis, design, and programming

e Some material for this lecture is drawn from Head First Java by Sierra &
Bates, © O'Reilly, 2003



Overview

e Objects
e Classes
¢ Relationships
* Inheritance
e Association
e Aggregation/Composition
e Qualification
* Interfaces

e Ken’s Corner: Multiple Inheritance



Objects (l)

e OO Technigques view software systems as being composed of objects

e Objects have
e state (aka attributes)
e behavior (aka methods or services)
¢ \We would like objects to be
* highly cohesive
e have a single purpose; make use of all features
* [oosely coupled

® be dependent on only a few other classes



Objects (lI)

e Objects interact by sending messages to one another
e Object A sends a message to Object B to request that it perform a task
* \When the task is complete, B may pass a value back to A
* Note: sometimes A ==
¢ that is, an object can send a message to itself

e Sometimes messages can be rerouted; invoking a method defined in class A
may be rerouted to an overridden version of that method in subclass B

e And, invoking a method on an object of class B may invoke an inherited
version of that method defined by superclass A



Objects ()

* In response to a message, an object may
e update its internal state
e retrieve a value from its internal state
e create a new object (or set of objects)
e delegate part or all of the task to some other object
¢ As a result, objects can be viewed as members of various object networks

e Objects in an object network (aka collaboration) work together to perform
a task for their host application



Objects (IV)

e UML notation
e Objects are drawn as rectangles with their names and types underlined

e Ken : Person

e The name of an object is optional. The type, however, is required

e : Person

e Note: the colon is not optional. It’s another clue that you are talking about
an object, not a class



Objects (V)

e Objects that know about each other have lines drawn between them
e This connection has many names, the three most common are
¢ object reference
e reference
e link
* Messages are sent across links

¢ Links are instances of associations (defined on slide 16)



Objects (Exampile)

Ken: Person

Skippy: Dog

Felix: Cat




Classes (l)

e A class is a blueprint for an object

e The blueprint specifies the attributes (aka instance variables) and
methods of the class

e attributes are things an object of that class knows
e methods are things an object of that class does

e An object is instantiated (created) from the description provided by its
class

e Thus, objects are often called instances

10



Classes (lI)

e An object of a class has its own values for the attributes of its class

e For instance, two objects of the Person class can have different values for
the name attribute

* In general, each object shares the implementation of a class’s methods and
thus behave similarly

¢ \When a class is defined, its developer provides an implementation for each
of its methods

e Thus, object A and B of type Per son each share the same implementation
of the sleep () method

11



Classes (lll)

e Classes can define “class wide” (aka static) attributes and methods
e A static attribute is shared among a class’s objects
e That is, all objects of that class can read/write the static attribute

¢ A static method does not have to be accessed via an object; you invoke
static methods directly on a class

e Static methods are often used to implement the notion of “library” in
OO languages; it doesn’t make sense to have multiple instances of a
Math class, each with their own sin() method

e \We will see uses for static attributes and methods throughout the semester

12



Classes by Analogy

e Address Book

e Each card in an address book is an “instance” or “object” of the
AddressBookCard class

e Each card has the same blank fields (attributes)
e You can do similar things to each card
e each card has the same set of methods
e The number of cards in the book is an example of a static attribute;

e Sorting the cards alphabetically is an example of a static method

13



Classes (IV)

e UML Notation
e Classes appear as rectangles with multiple parts
e The first part contains its name (defines a type)
e The second part contains the class’s attributes

e The third part contains the class’s methods

14



Relationships: Inheritance

e Classes can be related in various
ways

¢ One class can extend another
(aka inheritance)

e notation: an open triangle
points to the superclass

e As we learned last time, the
subclass can add behaviors or
override existing ones

Animal

food type
location

makeNoise()
eat()

roam()
Iy e—

Hippo

submerge()

makeNoise()
eat()

15



Relationships: Association

e One class can reference another (aka
association)

Zoo Zoo

e notation: straight line Hippo ourHippo

e This notation is a graphical addAnimal() addAnimal()
shorthand that each class contains
an attribute whose type is the other
class :>
Hippo Hippo
Z00 myZoo

makeNoise() makeNoise()
eat() eat()

16



Multiplicity

¢ Associations can indicate the number of instances involved in the relationship
¢ this is known as multiplicity
e An association with no markings is “one to one”

¢ An association can also indicate directionality

17



Multiplicity Examples

A B One B with each A; one

A with each B
1 1

A < > B Same as above

A 1 * 5 Zero or more Bs with each
A: one A with each B

A * * 5 Zero or more Bs with each
A: ditto As with each B

A 1 2..5 o Two to Five Bs with each
A: one A with each B

A " | 5 Zero or more Bs with each

" A; B knows nothing about A

18



Multiplicity

—Xample

2..5

19



Relationships: whole-part

e Associations can also convey semantic information about themselves

¢ |In particular, aggregations indicate that one object contains a set of other
objects

¢ think of it as a whole-part relationship between
® a class representing a group of components
¢ a class representing the components

e Notation: aggregation is indicated with a white diamond attached to the
class playing the container role

20



Aggregation

—xample: Aggregation

Composition

Crate

Book

R Sa—

——

Bottle

Section

——

*

Chapter

Composition will be
defined on the next slide

Note: aggregation and
composition relationships
change the default multiplicity
of associations;

iInstead of “one to one”, you
should assume “one to many’

21



Semantics of Aggregation

e Aggregation relationships are transitive

e if A contains B and B contains C, then A contains C
e Aggregation relationships are asymmetric

e [f A contains B, then B does not contain A

e A variant of aggregation is composition which adds the property of
existence dependency

e if A composes B, then if A is deleted, B is deleted

e Composition relationships are shown with a black diamond attached to the
composing class

22



Relationships: Qualification

e An association can be qualified with information that indicates how objects
on the other end of the association are found

e This allows a designer to indicate that the association requires a query
mechanism of some sort

® e.g., an association between a phonebook and its entries might be
qualified with a name, indicating that the name is required to locate a
particular entry

e Notation: a qualification is indicated with a rectangle attached to the end
of an association indicating the attributes used in the query

23



Qualification Example

PhoneBook

name i‘

Entry

24



Relationships: Interfaces

e A class can indicate that it implements an interface

e An interface is a type of class definition in which only method signatures
are defined

¢ A class implementing an interface provides method bodies for each defined
method signature in that interface

e This allows a class to play different roles, each role providing a different set
of services

e These roles are then independent of the class’s inheritance
relationships

e Other classes can then access a class via its interface

e This is indicated via a “ball and socket” notation

25



—xample: Interfaces

Dog

food type
location

Dog

makeNoise()
eat()
roam()

food type
location

I Pet

makeNoise()
eat()
roam()

\o/ Pet

Person

26



Class Summary

e Classes are blue prints used to create objects
e Classes can participate in multiple relationship types
® inheritance
® association
e associations have multiplicity
e aggregation/composition
e qualification

¢ |nterfaces

27



Ken’s Corner

e Multiple Inheritance
e Some material for this section taken from
e Object-Oriented Design Heuristics by Arthur J. Riel
e Copyright © 1999 by Addison Wesley
e |ISBN: 0-201-63385-X

28



Multiple Inheritance

e Riel does not advocate the use of multiple inheritance (its too easy to misuse
it). As such, his first heuristic is

* If you have an example of multiple inheritance in your design, assume you
have made a mistake and prove otherwise!

e Most common mistake
e Using multiple inheritance in place of containment
e That is, you need the services of a List to complete a task

e Rather than creating an instance of a List internally, you instead use
multiple inheritance to inherit from your semantic superclass as well
as from List to gain direct access to List’s methods

¢ You can then invoke List’s methods directly and complete the
task

29



Graphically

Animal List
food type elements
location head
makeNoise() addElement()
eat() removeElement()
roam() findElement|()

ﬁﬁi
Inheriting from List in this way Is bad,

Hippo because “Hippo IS-A List™ is FALSE

A Hippo is NOT a special type of List

makeNoise()

eat() Instead...
submerge()




Do This

Animal

food type
location

makeNoise()
eat()

roam()
Y en—

What’s the Difference”?

Hippo List
elements
head
makeNoise() addElement()
eat() removeElement()
submerge() findElement()

31



Another Problem

What'’s wrong with this”

——

——

Hint: think about what might
happen when you create an
iInstance of D

Fortunately: Python gets it
right! See example code.

32



Multiple Inheritance

e A Second Heuristic
e |Whenever there is inheritance in an OO design, ask two questions:
1) Am | a special type of the thing from which I’m inheriting?
2) Is the thing from which I’'m inheriting part of me?
e A yes to 1) and no to 2) implies the need for inheritance
e A noto 1) and a yes to 2) implies the need for composition
e Recall Hippo/List example
e Example
e |s an airplane a special type of fuselage? No

e |s a fuselage part of an airplane? Yes

33



Multiple Inheritance

¢ A third heuristic

* |VVhenever you have found a multiple inheritance relationship in an object-
oriented design, be sure that no base class is actually a derived class of
another base class

e Otherwise you have what Riel calls accidental multiple inheritance

e Consider the classes “Citrus”, “Food”, and “Orange”; you can have
Orange multiply inherit from both Citrus and Food...but Citrus IS-A Food,
and so the proper hierarchy can be achieved with single inheritance

‘ Food \ ‘ Citrus \
‘ Orange \

Food

Citrus

Orange 34

T



Multiple Inheritance

® S0, is there a valid use of multiple inheritance?
¢ Yes, sub-typing for combination

e |t is used to define a new class that is a special type of two other
classes where those two base classes are from different domains

® In such cases, the derived class can then legally combine data and
behavior from the two different base classes in a way that makes
semantic sense

35



Multiple Inheritance Example

WoodenObject Door

VAN VAN

WoodenDoor

s a wooden door a special type of door”? Yes

s a door part of a wooden door? No

s a wooden door a special type of wooden object? Yes
s a wooden object part of a door”? No

s a wooden object a special type of door? No

s a door a special type of wooden object”? No

All Heuristics Pass!




Homework 1: On

its Way

e Will involve questions concerning this diagram

Feline

age: int
location: Point

getAge() : int
getLocation(): Point
makeNoise(): String

roam()

A

Cat

owner: Person

getOwner() : Person
makeNoise(): String

Lion

mane: int

getLengthOfMane() : int
makeNoise(): String

37



Homework 1: On Its Way

e And these two diagrams...

Shape

JAN

Rectangle

Shape

JAN

Rectangle

Square

N

Square

38



Coming Up Next

e |_ecture 4: Object Fundamentals, Part 3
e | ecture 5: Great Software

e Read Chapter 1 of the OO A&D book

39



