
Object Fundamentals, Part One

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 2 — 08/27/2009

1Thursday, August 27, 2009

Lecture Goals

• Introduce basic concepts, terminology, and notations for object-oriented
analysis, design, and programming

• A benefit of the OO approach is that the same concepts appear in all three
stages of development

• Start with material presented in Appendix II of your textbook

• Continue (in lecture 3) with additional material from previous versions of
this class as well as from Head First Java by Sierra & Bates, © O'Reilly,
2003

• Will present examples and code throughout

2Thursday, August 27, 2009

Big Picture View

• OO techniques view software systems as

• systems of communicating objects

• Each object is an instance of a class

• All objects of a class share similar features

• attributes

• methods

• Classes can be specialized by subclasses

• Objects communicate by sending messages

3Thursday, August 27, 2009

Welcome to Objectville

• What were the major concepts discussed in Appendix II of the textbook?

• Unified Modeling Language (UML)

• Class Diagrams

• Inheritance

• Polymorphism

• Encapsulation

4Thursday, August 27, 2009

UML

• UML stands for Unified Modeling Language

• UML defines a standard set of notations for use in modeling object-
oriented systems

• Throughout the semester we will encounter UML in the form of

• class diagrams

• sequence/collaboration diagrams

• state diagrams

• activity diagrams, use case diagrams, and more

5Thursday, August 27, 2009

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

Attributes
(member variables)

Methods

All parts are optional
except the class name

This rectangle says that there is a class called Airplane that
could potentially have many instances, each with its own
speed variable and methods to access it

6Thursday, August 27, 2009

Translation to Code

• Class diagrams can be translated into code in a fairly straightforward manner

• Define the class with the specified name

• Define specified attributes (assume private access)

• Define specified method skeletons (assume public)

• May have to deal with unspecified information

• Types are optional in class diagrams

• Class diagrams typically do not specify constructors

• constructors are used to initialize an object

7Thursday, August 27, 2009

Airplane in Java

public class Airplane {1

 2

 private int speed;3

 4

 public Airplane(int speed) {5

 this.speed = speed;6

 }7

 8

 public int getSpeed() {9

 return speed;10

 }11

 12

 public void setSpeed(int speed) {13

 this.speed = speed;14

 }15

16

}17

8Thursday, August 27, 2009

Airplane in Python

class Airplane(object):1

 2

 def __init__(self, speed):3

 self.speed = speed4

 5

 def getSpeed(self):6

 return self.speed;7

 8

 def setSpeed(self, speed):9

 self.speed = speed10

9Thursday, August 27, 2009

Airplane in Ruby

class Airplane1

2

 attr_accessor :speed3

4

 def initialize(speed)5

 @speed = speed6

 end7

 8

end9

10Thursday, August 27, 2009

Using these Classes?

• The materials for this lecture contains source code that shows how to use
these classes

• Demonstration

• Airplane.java, Airplane.py, Airplane.rb

• Be sure to attempt to run these examples on your own

• It will be good experience to learn how to run Java, Python, and Ruby
programs on your personal machine or on a Lab machine (either ITS or
CSEL)

11Thursday, August 27, 2009

Inheritance

• Inheritance refers to the ability of one class to inherit behavior from another
class

• and change that behavior if needed

getSpeed(): int
setSpeed(int)

speed: int
Airplane

accelerate()
MULTIPLIER: int

Jet

Inheritance lets you build classes based
on other classes and avoid duplicating
and repeating code

Note: UML notation to indicate inheritance
is a line between two classes with a
triangle pointing at the base class or
superclass

12Thursday, August 27, 2009

Inheriting From Airplane (in Java)

public class Jet extends Airplane {1

2

 private static final int MULTIPLIER = 2;3

 4

 public Jet(int id, int speed) {5

 super(id, speed);6

 }7

 8

 public void setSpeed(int speed) {9

 super.setSpeed(speed * MULTIPLIER);10

 }11

 12

 public void accelerate() {13

 super.setSpeed(getSpeed() * 2);14

 }15

16

}17

18

Note:

extends keyword
indicates inheritance

super() and super
keyword is used to refer
to superclass

No need to define
getSpeed() method; its
inherited!

setSpeed() method
overrides behavior of
setSpeed() in Airplane

subclass can define
new behaviors, such as
accelerate()

13Thursday, August 27, 2009

Inheritance in Python

class Jet(Airplane):1

 2

 MULTIPLIER = 23

4

 def __init__(self, id, speed):5

 super(Jet, self).__init__(id, speed)6

7

 def setSpeed(self, speed):8

 super(Jet, self).setSpeed(speed * Jet.MULTIPLIER)9

10

 def accelerate(self):11

 super(Jet, self).setSpeed(self.getSpeed() * 2);12

13

14Thursday, August 27, 2009

Inheritance in Ruby

class Jet < Airplane1

2

 @@MULTIPLIER = 23

4

 def initialize(id, speed)5

 super(id, speed)6

 end7

8

 def speed=(speed)9

 super(speed * @@MULTIPLIER)10

 end11

12

 def accelerate()13

 @speed = @speed * 214

 end15

16

end17

18

15Thursday, August 27, 2009

Polymorphism: “Many Forms”
• From the textbook: “When one class inherits from another, then

polymorphism allows a subclass to stand in for the superclass.”

• Implication: both of these are legal statements

• Airplane plane = new Airplane()

• Airplane plane = new Jet()

• Any code that uses the “plane” variable will treat it as an Airplane… this
provides flexibility, since that code will run unchanged, indeed it doesn’t
even need to be recompiled, when new Airplane subclasses are created

16Thursday, August 27, 2009

Encapsulation

• Encapsulation is

• when you hide parts of your data from the rest of your application

• and limit the ability for other parts of your code to access that data

• Encapsulation lets you protect information in your objects from being used
incorrectly

• Closely Related Concept: Abstraction

• What features does a class provide to its users?

• What services can it perform?

• Indeed, abstraction is the MOST IMPORTANT concern in OO A&D!!

17Thursday, August 27, 2009

Encapsulation Example

•The “speed” instance
variable is private in Airplane.
That means that Jet doesn’t
have direct access to it.

•Nor does any client of
Airplane or Jet objects

• Imagine if we changed
speed’s visibility to public

•The encapsulation of Jet’s
setSpeed() method would be
destroyed

Airplane1

2

...3

public void setSpeed(int speed) {4

 this.speed = speed;5

}6

...7

8

Jet9

10

...11

public void setSpeed(int speed) {12

 super.setSpeed(speed * MULTIPLIER);13

}14

...15

16

Demonstration

18Thursday, August 27, 2009

Summary

• OO software is a system of communicating objects

• UML provides standard notations for documenting the structure of OO
systems

• Classes define the features of objects, both their data and behavior

• Inheritance allows classes to share behavior and avoid duplicating/
repeating code

• Polymorphism allows a subclass to stand in for its superclass

• Encapsulation occurs when you hide parts of your code from other parts,
thereby protecting it

19Thursday, August 27, 2009

Quick Exercise

• Develop a UML class diagram for the following two classes

• A Person class that stores a person’s name, age, and favorite color

• An Employee class that stores a person’s job title and salary

• Create the diagram such that the following Java code fragment would have a
chance at running:

• Employee e = new Employee(“Ken”, 41, “blue”, “Associate Professor”, 0);

• System.out.println(“” + e.getAge());

• Person p = ….

• Employe e = new Employee(p, “prof”, 0);

20Thursday, August 27, 2009

Ken’s Corner (I)

• Forgot to mention <http://slashdot.org/> on Tuesday

• Developer-Oriented discussion forum with the motto:

• News for Nerds. Stuff that Matters.

• Today’s subject: Python Generators

• Imagine you have been asked to create a function that produces a
sequence of numbers, say the Fibonacci sequence

• You might decide to take a parameter of the number of values to generate
in the sequence and then return the values in a list

21Thursday, August 27, 2009

http://slashdot.org
http://slashdot.org

Ken’s Corner (II)

def fib_list(n):

 results = []

 a, b = 0, 1

 for i in range(n):

 results.append(b)

 a, b = b, a+b

 return results

fib_list(5) returns

 [1, 1, 2, 3, 5]

22Thursday, August 27, 2009

Ken’s Corner (III)

• This approach works great as long as you don’t pass in an unreasonable
number for n

• Why?

• Consider needing to process each element of this sequence, if you did this

• list = fib_list(some_huge_number)

• for i in list:

• <do something>

• You need to essentially process the list twice:

• first creating it and then looping over it

• if it’s a really big list then you also can run into memory-related problems

23Thursday, August 27, 2009

Ken’s Corner (IV)

• To get around this problem, python added a feature called generators which
are functions that contain at least one use of the “yield” keyword

• When a generator encounters a yield, it saves all the values of its local
variables and then returns the value specified by the yield keyword’s
expression

• The next time the generator is called, execution begins just after the
statement that contained the yield keyword, with all local variables
restored to their previous value

24Thursday, August 27, 2009

Ken’s Corner (IV)

def fib(n):

 count = 0

 a, b = 0, 1

 while count < n:

 yield b

 count += 1

 a, b = b, a+b

This produces the first n numbers in the Fibonacci sequence, one value at a
time. When you call fib(100), you get back an iterator that can be used to loop
over the values in the sequence. You can either put the generator directly into
a for loop or you can call the generator’s next() function to get the next value
of the sequence.

25Thursday, August 27, 2009

Ken’s Corner (V)

for i in fib(100):

 print(i)

• The above will print the first 100 values of the Fibonacci sequence

• Note that this solves the problem on slide 23

• You can now loop over and process the sequence at the same time

• You don’t have to create a potentially huge list of numbers and then
loop over it

• So generators are an excellent way of producing (possibly infinite) sequences
in an efficient manner

• Generators can be used in lots of different ways including when implementing
state machines, parsers, and looping over large data sets

26Thursday, August 27, 2009

Ken’s Corner (VI)

• You don’t need to use the fib_list() style of code to create lists either

• Instead, you can hand a generator to the “list constructor” and it will
create a list from the generator

• In this case, you do have to be aware of memory constraints

• results = list(fib(20))

• print(results)

• would produce

• [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181, 6765]

27Thursday, August 27, 2009

Coming Up Next

• Lecture 3: Object Fundamentals Continued

• No reading assignment

• Note: Lecture 3 will repeat some of the things mentioned in this lecture

• Lecture 4: Great Software

• Read Chapter 1 of the OO A&D book

28Thursday, August 27, 2009

