Kernel Debugging?

» Operating System sits on the Hardware
Debugging Tools — How to debug?
o User-Level Operating Systems
— UML (http://user-mode-linux.sourceforge.net)
— Not maintained
» Kernel Debuggers
— Kgdb (http://oss.sgi.com/projects/kgdb)

Additional Tools for Debugging in
Hard Situations

Guest Lecture by Brad Morrey
December 3, 2004

User Mode Linux

OS w/Kgdb hooks

User Mode Linux Kgdb
Debugger (GDB)
(virtualized resources)

- Debugger (GDB) F

_ Actual Operating System

Hardware

Serial Link

Hardware




Memory Leaks

Operating System doesn’t track memory

operations during program execution

— With C/C++ this is for speed

— With Java the runtime does track memory but doesn’t
clear old objects still referenced

Debugger doesn’t track memory operations

— It could, but this would further slow program execution

Need a tool
— Purify — IBM commercial tool
— Valgrind (pronounced valgrinned)

GPL memory debugging and
profiling tool

Uninitialized memory use

Using memory after freeing

Access off the ends of malloc’d blocks
Accesses to the stack

Memory leaks

Function call argument checking
Mismatched use of malloc/free/new/delete

Valgrind details

Intercepts calls to system memory
allocation routines

Tracks loads/stores
Runs with binaries

Reports errors as they occur with line
number and stack trace

Limitations

Works best with dynamically linked
executables

Has trouble with STL (STL uses its own
allocation routines)

Requires debugging information

Can’t handle bounds checking on static or
stack allocated arrays




Conclusion

» Tools exist to make the programmer’s job
easier

* None is a silver bullet

» But many can improve productivity when
used in the proper circumstances




