
Debugging Tools

Additional Tools for Debugging in

Hard Situations

Guest Lecture by Brad Morrey

December 3, 2004

Kernel Debugging?

• Operating System sits on the Hardware

– How to debug?

• User-Level Operating Systems

– UML (http://user-mode-linux.sourceforge.net)

– Not maintained

• Kernel Debuggers

– Kgdb (http://oss.sgi.com/projects/kgdb)

User Mode Linux

User Mode Linux

(virtualized resources)

Debugger (GDB)

Actual Operating System

Hardware

Kgdb

Debugger (GDB)OS w/Kgdb hooks

Hardware

Serial Link



Memory Leaks

• Operating System doesn’t track memory
operations during program execution

– With C/C++ this is for speed

– With Java the runtime does track memory but doesn’t
clear old objects still referenced

• Debugger doesn’t track memory operations

– It could, but this would further slow program execution

• Need a tool

– Purify – IBM commercial tool

– Valgrind (pronounced valgrinned)

GPL memory debugging and

profiling tool

• Uninitialized memory use

• Using memory after freeing

• Access off the ends of malloc’d blocks

• Accesses to the stack

• Memory leaks

• Function call argument checking

• Mismatched use of malloc/free/new/delete

Valgrind details

• Intercepts calls to system memory

allocation routines

• Tracks loads/stores

• Runs with binaries

• Reports errors as they occur with line

number and stack trace

Limitations

• Works best with dynamically linked

executables

• Has trouble with STL (STL uses its own

allocation routines)

• Requires debugging information

• Can’t handle bounds checking on static or

stack allocated arrays



Conclusion

• Tools exist to make the programmer’s job

easier

• None is a silver bullet

• But many can improve productivity when

used in the proper circumstances


