q Lecture 28: XML

i Today’s Lecture

= Introduce XML
= background

| = concepts
= examples
Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2004
Quick Introduction Background

= XML stands for
= eXstensible Markup Language
= Itis a language for creating new languages

= In particular, it is designed to create “tagged”
languages similar to HTML

= Itis considered “extensible” because it allows
the developer to create new tags

= as compared to HTML where the set of tags has
been fixed and new tags are ignored by browsers

November 24, 2004 © University of Colorado, 2004 3

= XML was developed to address concerns about
HTML

= In particular, HTML mixes document structure and document
presentation in one language

= This makes it difficult to change a document’s presentation
while keeping its structure the same
= Originally, HTML was meant to address the same
concern; it was just supposed to specify document
structure, not presentation
= but the browser wars quickly changed that!

= In particular, users cared about the presentation of their
information, and quickly demanded presentation features
= , <center>, <margin>, etc.

November 24, 2004 © University of Colorado, 2004 4

An additional problem

= An additional problem can be seen by viewing the
HTML source of the the CNN website
= This page is filled with “headlines” and text/images that
support those headlines
= A “major” headline looks like this

= <H3>Earliest
certified election results in Florida:
6 p.m. EST</H3>

= A “minor’headline looks like this

= • Bush sues 4 counties
over absentee ballots

= Is the difference intuitive? :-)
= Disclaimer: the above code is taken from a few years back

November 24, 2004 © University of Colorado, 2004 5

The problem explained

= The problem is that
= presentation concerns (i.e. making the web page look good)
= are overriding structural concerns (i.e. this information is a
headline)
= The fact that one paragraph is a headline and
another is supporting text is completely lost in the
HTML

= If you wanted to write a program to search this web
page and list all headlines, you would need to code
knowledge of CNN'’s presentation rules to figure out
where the headlines are hiding

= To make matters worse, if CNN changes its presentation,
you would have to change your program!

November 24, 2004 © University of Colorado, 2004 6

The XML approach

= Imagine if the source for CNN’s webpage looked like
this
= <story>

= <headline class="important”>Election returns due at 6 PM
EST.</headline>

= <supportingText>Blah Blah Blah...</supportingText>
= </story>
= Here, structure is preserved

= It would be very easy to write a program to grab the
headlines out of this document

= S0, how do we handle presentation?
= XSLT, which is covered in the next lecture

November 24, 2004 © University of Colorado, 2004 7

XML definitions

= An XML document consists of the following
parts
= a Document Type Definition (or DTD)
= Data

= The DTD defines the structure of the data. A
parser can read the DTD and know how to
parse the data that follows it
= As such, XML documents are said to be “self-

describing”: all the information for parsing the data
is contained in the document itself

November 24, 2004 © University of Colorado, 2004 8

Note

= This lecture is presenting a simplified view of
the XML standard

= In particular, the standard supports a number of
ways of associating a DTD with an XML document

= We will cover only one of these mechanisms in
this lecture, known as the internal DTD

= For more information, buy a book on XML, visit
<http://www.xml.com/>, or read the XML standard
at:
= <http://www.w3.0rg/TR/2000/REC-xmI-20001006>

= Note: the spec is not for the “faint of heart”. | would
recommend starting with an XML book

November 24, 2004 © University of Colorado, 2004 9

XML Syntax Rules

= XML imposes a number of syntax rules that
make it easier to parse than HTML

= All tags must be closed, e.g.

= <p>HTML lets you skip the closing p tag, XML does
not.</p>

= Note: the closing tag must match the opening tag!

=
-In HTML, you can have single tags like
 to
introduce a horizontal break in the document. The

tag has no content associated with it; XML requires tags
with no content to explicitly end with a trailing slash,
hence
.

November 24, 2004 © University of Colorado, 2004 10

XML Syntax Rules, continued

= Additional syntax rules

= All attribute values must be quoted

= €.g. HTML allows the following
<p align=center>blah blah blah</p>

= XML requires the following
<p align="center">blah blah blah</p>
= There are many others

= concerning legal characters, comments, etc.
See the spec for details.

November 24, 2004 © University of Colorado, 2004 11

Well-Formed XML Documents

= XML documents are considered well-formed
if they conform to the XML Syntax rules

= Well-formed documents can be parsed by
any XML Parser without the need for a DTD

= It can use the syntax rules to parse the document
cleanly, but without the DTD it does not know if the
document is valid

November 24, 2004 © University of Colorado, 2004 12

Valid XML Documents

= An XML document is considered “valid” if
= (1) itis well-formed and
= (2) it conforms to the rules specified in its
associated DTD

= Thatis, if the DTD says that a <p> tag can only contain
 tags and plain text, then a <p> tag which contains an
 tag would be considered invalid

November 24, 2004 © University of Colorado, 2004 13

Parts of an XML document

= XML declaration

= Document declaration

= We will be showing a document declaration
with an embedded DTD

= This is only one type of XML document
declaration, see the note on slide 9

= Data

November 24, 2004 © University of Colorado, 2004 14

XML Declaration

= An XML document begins with this tag
= <?xml version="1.0"?>

= The question mark denotes a “processing
instruction”

= This instruction is for an XML parser
= Its provides the parser with additional information

about the XML document

= An XML document can contain additional

processing instructions

= The parser will pass these instructions to the client

that asked the parser to parse the document
November 24, 2004 © University of Colorado, 2004 15

XML Declaration, continued

= Additional attributes

= encoding
= <?xml version="1.0" encoding="UTF-8">
= XML documents can be stored in a variety of character
encodings; see the spec for all of the legal values that
can be supplied for “encoding”
= standalone
= <?xml version="1.0" standalone="yes">
= yes means document is self-contained
= No means the DTD is stored externally

November 24, 2004 © University of Colorado, 2004 16

Document Declaration

s The document declaration comes after the
XML Declaration

= Its tag name is DOCTYPE
= There are two forms
= internal
= <IDOCTYPE greeting [...DTD Goes Here... |>
= external
« <IDOCTYPE greeting SYSTEM *“greeting.dtd”]>
= We will cover the first form

November 24, 2004 © University of Colorado, 2004

17

DTD Syntax

= The DTD is where you declare the elements
(a.k.a. tags) and attributes that will appear in
your XML document

= In defining elements, you use regular
expressions to declare the order in which
elements are to appear

= Attributes can be associated with elements
and can have default values associated with
them

= Lets look at an example

November 24, 2004 © University of Colorado, 2004 18

DTD for a Class Gradebook

<IDOCTYPE gradebook [
<IELEMENT gradebook (class, student*)>
<IELEMENT class (name, studentsEnrolled)>
<IATTLIST class semester CDATA #REQUIRED>
<IELEMENT name (#PCDATA)>
<IELEMENT studentsEnrolled (#PCDATA)>
<IELEMENT student (name, grade*)>
<IELEMENT grade (#PCDATA)>
<IATTLIST grade name CDATA #REQUIRED>
1>

November 24, 2004 © University of Colorado, 2004

19

What does this mean?

= This DTD defines a document whose root element is called
“gradebook”
= The first element in gradebook has to be a “class” element
followed by zero or more student elements
= A Class element contains a name and the number of student’s
enrolled
= It has a required attribute called semester
= A student contains a name and zero or more grades
= A name, a grade, and the studentsEnrolled are declared as
having PCDATA or “Parsed Character Data” as their content =>
this means that they contain strings
= The grade element also has an attribute called name

November 24, 2004 © University of Colorado, 2004 20

An example

<?xml version="1.0" ?>
<IDOCTYPE gradebook [...insert DTD from slide 19 here]>
<gradebook>
<class semester="Fall 2004">
<name>CSCI 3308</name>
<studentsEnrolled>36</studentsEnrolled>
</class>
<student>
<name>Ken Anderson</name>
<grade name="lab0">10</grade>
<grade name="lab1">9</grade>

Element Declarations

= Empty Elements
= <IELEMENT BR EMPTY>

= Non-Empty Elements
» <IELEMENT NAME (CONTENT)>
= Content contains a regular expression of element
names and/or Character Data

= #PCDATA - strings are parsed for embedded
elements (like searching for a tag within a <p>

</student> tag in HTML)
</gradebook> = #CDATA - strings are not parsed for embedded
elements
November 24, 2004 © University of Colorado, 2004 21 November 24, 2004 © University of Colorado, 2004 22
Regular Expressions in Element
Declarations Examples

= Elementl, Element2

= Element2 must follow Elementl
Element1?

= Elementl is optional
Elementl+

= At least one Elementl tag must appear
Elementl*

= Zero or more Elementl tags may appear
Elementl | Element2

= Either Elementl or Element2 may appear

November 24, 2004 © University of Colorado, 2004

23

= <[ELEMENT p (#PCDATA|B|I|EM|...)>

= A p tag may contain text, or a B element, or an |
element, or ...

» <I[ELEMENT name (first, middle?, last)

= A name consists of a first and last name and may
contain a middle name

= <IELEMENT shoppinglist (item+)
= A shopping list contains one or more items

November 24, 2004 © University of Colorado, 2004 24

i Attribute Declarations

= Declaring attributes requires that you first declare the
associated element
= You then use the ATTLIST element to declare the attributes
= <IELEMENT name (first, middle?, last)>
s <IATTLIST name
= age CDATA #REQUIRED
= height CDATA #IMPLIED
= gender (male|female) “female”>

= This example declares three attributes, one required and two
implied (optional), if no gender attribute is specified, it
defaults to “female”

= See the spec. for complete details on ATTLIST tag

November 24, 2004 © University of Colorado, 2004 25

i Summary

= XML provides the ability to create your own
tagged language

= The DTD defines the elements and attributes
of the document

= An XML document is “self-describing”
because the DTD is embedded directly in the
document

November 24, 2004 © University of Colorado, 2004 26

i Software Engineering Benefits

= XML attacks an accidental difficulty of
software engineering
= Having to define your own file formats
= Having to write parsers for these formats

= With XML, you can define file formats in a
standard way, and any XML parser can be
used to parse the file
= You never have to write a parser again!

= | threw out hundreds of lines of code from my
hypermedia system when | converted my
preference files to XML!

November 24, 2004 © University of Colorado, 2004 27

:L More Information

s General XML Information
» <http://www.xml.com/>
s Free XML Parsers

= <http://xml.apache.org/>

= Java and C++ parsers (with bindings for Perl
and COM)

= <http://www.alphaworks.ibom.com/>
= IBM’s Java and C++ parsers for XML

November 24, 2004 © University of Colorado, 2004 28

