
Lecture 28: XML

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

November 24, 2004 © University of Colorado, 2004 2

Today’s Lecture

Introduce XML

background

concepts

examples

November 24, 2004 © University of Colorado, 2004 3

Quick Introduction

XML stands for
eXstensible Markup Language

It is a language for creating new languages

In particular, it is designed to create “tagged”
languages similar to HTML

It is considered “extensible” because it allows
the developer to create new tags

as compared to HTML where the set of tags has
been fixed and new tags are ignored by browsers

November 24, 2004 © University of Colorado, 2004 4

Background

XML was developed to address concerns about
HTML

In particular, HTML mixes document structure and document
presentation in one language

This makes it difficult to change a document’s presentation
while keeping its structure the same

Originally, HTML was meant to address the same
concern; it was just supposed to specify document
structure, not presentation

but the browser wars quickly changed that!

In particular, users cared about the presentation of their
information, and quickly demanded presentation features

, <center>, <margin>, etc.

November 24, 2004 © University of Colorado, 2004 5

An additional problem

An additional problem can be seen by viewing the
HTML source of the the CNN website

This page is filled with “headlines” and text/images that
support those headlines

A “major” headline looks like this

<H3>Earliest
certified election results in Florida:
6 p.m. EST</H3>

A “minor”headline looks like this

 • Bush sues 4 counties
over absentee ballots

Is the difference intuitive? :-)

Disclaimer: the above code is taken from a few years back

November 24, 2004 © University of Colorado, 2004 6

The problem explained

The problem is that
presentation concerns (i.e. making the web page look good)

are overriding structural concerns (i.e. this information is a
headline)

The fact that one paragraph is a headline and
another is supporting text is completely lost in the
HTML

If you wanted to write a program to search this web
page and list all headlines, you would need to code
knowledge of CNN’s presentation rules to figure out
where the headlines are hiding

To make matters worse, if CNN changes its presentation,
you would have to change your program!

November 24, 2004 © University of Colorado, 2004 7

The XML approach

Imagine if the source for CNN’s webpage looked like
this

<story>

<headline class=“important”>Election returns due at 6 PM
EST.</headline>

<supportingText>Blah Blah Blah…</supportingText>

</story>

Here, structure is preserved
It would be very easy to write a program to grab the
headlines out of this document

So, how do we handle presentation?
XSLT, which is covered in the next lecture

November 24, 2004 © University of Colorado, 2004 8

XML definitions

An XML document consists of the following
parts

a Document Type Definition (or DTD)

Data

The DTD defines the structure of the data. A
parser can read the DTD and know how to
parse the data that follows it

As such, XML documents are said to be “self-
describing”: all the information for parsing the data
is contained in the document itself

November 24, 2004 © University of Colorado, 2004 9

Note

This lecture is presenting a simplified view of
the XML standard

In particular, the standard supports a number of
ways of associating a DTD with an XML document

We will cover only one of these mechanisms in
this lecture, known as the internal DTD

For more information, buy a book on XML, visit
<http://www.xml.com/>, or read the XML standard
at:

<http://www.w3.org/TR/2000/REC-xml-20001006>

Note: the spec is not for the “faint of heart”. I would
recommend starting with an XML book

November 24, 2004 © University of Colorado, 2004 10

XML Syntax Rules

XML imposes a number of syntax rules that

make it easier to parse than HTML

All tags must be closed, e.g.

<p>HTML lets you skip the closing p tag, XML does

not.</p>

Note: the closing tag must match the opening tag!

 - In HTML, you can have single tags like
 to

introduce a horizontal break in the document. The

tag has no content associated with it; XML requires tags

with no content to explicitly end with a trailing slash,

hence
.

November 24, 2004 © University of Colorado, 2004 11

XML Syntax Rules, continued

Additional syntax rules

All attribute values must be quoted

e.g. HTML allows the following
<p align=center>blah blah blah</p>

XML requires the following
<p align="center">blah blah blah</p>

There are many others

concerning legal characters, comments, etc.

See the spec for details.

November 24, 2004 © University of Colorado, 2004 12

Well-Formed XML Documents

XML documents are considered well-formed

if they conform to the XML Syntax rules

Well-formed documents can be parsed by

any XML Parser without the need for a DTD

It can use the syntax rules to parse the document

cleanly, but without the DTD it does not know if the

document is valid

November 24, 2004 © University of Colorado, 2004 13

Valid XML Documents

An XML document is considered “valid” if

(1) it is well-formed and

(2) it conforms to the rules specified in its

associated DTD

That is, if the DTD says that a <p> tag can only contain

 tags and plain text, then a <p> tag which contains an

 tag would be considered invalid

November 24, 2004 © University of Colorado, 2004 14

Parts of an XML document

XML declaration

Document declaration

We will be showing a document declaration

with an embedded DTD

This is only one type of XML document

declaration, see the note on slide 9

Data

November 24, 2004 © University of Colorado, 2004 15

XML Declaration

An XML document begins with this tag
<?xml version=“1.0”?>

The question mark denotes a “processing
instruction”

This instruction is for an XML parser
Its provides the parser with additional information
about the XML document

An XML document can contain additional
processing instructions

The parser will pass these instructions to the client
that asked the parser to parse the document

November 24, 2004 © University of Colorado, 2004 16

XML Declaration, continued

Additional attributes

encoding

<?xml version=“1.0” encoding=“UTF-8”>

XML documents can be stored in a variety of character

encodings; see the spec for all of the legal values that

can be supplied for “encoding”

standalone

<?xml version=“1.0” standalone=“yes”>

yes means document is self-contained

no means the DTD is stored externally

November 24, 2004 © University of Colorado, 2004 17

Document Declaration

The document declaration comes after the

XML Declaration

Its tag name is DOCTYPE

There are two forms

internal

<!DOCTYPE greeting [...DTD Goes Here…]>

external

<!DOCTYPE greeting SYSTEM “greeting.dtd”]>

We will cover the first form

November 24, 2004 © University of Colorado, 2004 18

DTD Syntax

The DTD is where you declare the elements
(a.k.a. tags) and attributes that will appear in
your XML document

In defining elements, you use regular
expressions to declare the order in which
elements are to appear

Attributes can be associated with elements
and can have default values associated with
them

Lets look at an example

November 24, 2004 © University of Colorado, 2004 19

DTD for a Class Gradebook

<!DOCTYPE gradebook [

<!ELEMENT gradebook (class, student*)>

<!ELEMENT class (name, studentsEnrolled)>

<!ATTLIST class semester CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT studentsEnrolled (#PCDATA)>

<!ELEMENT student (name, grade*)>

<!ELEMENT grade (#PCDATA)>

<!ATTLIST grade name CDATA #REQUIRED>

]>

November 24, 2004 © University of Colorado, 2004 20

What does this mean?

This DTD defines a document whose root element is called

“gradebook”

The first element in gradebook has to be a “class” element

followed by zero or more student elements

A Class element contains a name and the number of student’s

enrolled

It has a required attribute called semester

A student contains a name and zero or more grades

A name, a grade, and the studentsEnrolled are declared as

having PCDATA or “Parsed Character Data” as their content =>

this means that they contain strings

The grade element also has an attribute called name

November 24, 2004 © University of Colorado, 2004 21

An example

<?xml version=“1.0” ?>

<!DOCTYPE gradebook […insert DTD from slide 19 here]>

<gradebook>

<class semester=“Fall 2004”>

<name>CSCI 3308</name>

<studentsEnrolled>36</studentsEnrolled>

</class>

<student>

<name>Ken Anderson</name>

<grade name=“lab0”>10</grade>

<grade name=“lab1”>9</grade>

</student>

</gradebook>

November 24, 2004 © University of Colorado, 2004 22

Element Declarations

Empty Elements
<!ELEMENT BR EMPTY>

Non-Empty Elements
<!ELEMENT NAME (CONTENT)>

Content contains a regular expression of element
names and/or Character Data

#PCDATA - strings are parsed for embedded
elements (like searching for a tag within a <p>
tag in HTML)

#CDATA - strings are not parsed for embedded
elements

November 24, 2004 © University of Colorado, 2004 23

Regular Expressions in Element

Declarations

Element1, Element2

Element2 must follow Element1

Element1?

Element1 is optional

Element1+

At least one Element1 tag must appear

Element1*

Zero or more Element1 tags may appear

Element1 | Element2

Either Element1 or Element2 may appear

November 24, 2004 © University of Colorado, 2004 24

Examples

<!ELEMENT p (#PCDATA|B|I|EM|…)>

A p tag may contain text, or a B element, or an I

element, or …

<!ELEMENT name (first, middle?, last)

A name consists of a first and last name and may

contain a middle name

<!ELEMENT shoppinglist (item+)

A shopping list contains one or more items

November 24, 2004 © University of Colorado, 2004 25

Attribute Declarations

Declaring attributes requires that you first declare the
associated element

You then use the ATTLIST element to declare the attributes

<!ELEMENT name (first, middle?, last)>

<!ATTLIST name

age CDATA #REQUIRED

height CDATA #IMPLIED

gender (male|female) “female”>

This example declares three attributes, one required and two
implied (optional), if no gender attribute is specified, it
defaults to “female”

See the spec. for complete details on ATTLIST tag

November 24, 2004 © University of Colorado, 2004 26

Summary

XML provides the ability to create your own

tagged language

The DTD defines the elements and attributes

of the document

An XML document is “self-describing”

because the DTD is embedded directly in the

document

November 24, 2004 © University of Colorado, 2004 27

Software Engineering Benefits

XML attacks an accidental difficulty of
software engineering

Having to define your own file formats

Having to write parsers for these formats

With XML, you can define file formats in a
standard way, and any XML parser can be
used to parse the file

You never have to write a parser again!

I threw out hundreds of lines of code from my
hypermedia system when I converted my
preference files to XML!

November 24, 2004 © University of Colorado, 2004 28

More Information

General XML Information

<http://www.xml.com/>

Free XML Parsers

<http://xml.apache.org/>

Java and C++ parsers (with bindings for Perl

and COM)

<http://www.alphaworks.ibm.com/>

IBM’s Java and C++ parsers for XML

