q Lecture 26: Profiling and gprof

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2004

Two Problems

= Software often has performance problems
= especially when handling a lot of data
= or when placed in “real-time” situations

= Developers often think they know the cause of such
problems

= Without measuring the system at run-time, they make
changes, recompile, and discover that the performance
problems are still there

= They often get caught up in “little” optimizations

= making private data public; forcing the inlining of functions,
decreasing the modularity of code, etc.

November 19, 2004 © University of Colorado, 2004

80/20 Rule

= These “little” optimizations often fail to
have an effect due to the 80/20 rule

= 80% of run-time is spent in about 20% of the code
= S0, you first need to find that 20% and focus your
optimization efforts there

= optimizing the other 80% of the code, will not provide

much overall benefit (because that code is only rarely
executed!)

November 19, 2004 © University of Colorado, 2004

Profiling

= In order to do this, we need some way of
measuring our program’s execution
= in particular we need to know how long each part
of a program takes to execute
= Performance profiling offers two techniques
for accomplishing this
= Software Profiling
= Hardware Profiling

November 19, 2004 © University of Colorado, 2004

Software Profiling

= A compiler adds statements to a program that take
time measurements as it is running

= Add statements to capture the current time at the beginning
and end of a function

= Subtract to calculate the time spent in the function
= Add the time spent to a running total
= At the end of the program, calculate the percentage of
program time spent in the function by dividing its total time
by the total execution time of the program
= Software profiling is less accurate because you are
changing the program you are trying to measure, but
it is easier to do

November 19, 2004 © University of Colorado, 2004 5

Hardware Profiling

= Measurements are taken with hardware

= Components are attached to the
motherboard and take timing
measurements without changing how
the program is run

November 19, 2004 © University of Colorado, 2004 6

gprof

= gprof is an example of a software profiler. Its output is
divided into two sections
= Flat Profile
= The total time taken by each function
= Call Graph
» describes the call graph of the program

= It shows what functions were called by other functions, and how
much time was taken by the children of a function

You can subtract the time taken by a function’s children from its
total time, to get its true time

November 19, 2004 © University of Colorado, 2004 7

Using gprof

= Using gprof is a three step process
= First, you must compile and load the program with the “-pg”
command flag
= Second, you run the program...this generates a file called
gmon.out
= Third, you invoke gprof with the command
= gprof program gmon.out

= gprof prints the flat profile and call graph information to standard
out; to save it use:
= gprof program gmon.out > profiling-results

November 19, 2004 © University of Colorado, 2004 8

Example Flat Profile

granularity: each sample hit covers 4 byte(s) for 5.56% of 0.18 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
83.3 0.15 0.15 203 0.74 0.88 _find_alphabetical_location
16.7 0.18 0.03 15925 0.00 0.00 _stringToUpper
0.0 0.18 0.00 204 0.00 0.00 _format_currency
0.0 0.18 0.00 203 0.00 0.00 _calculate_wages
0.0 0.18 0.00 203 0.00 0.89 _insert alphabetical
0.0 0.18 0.00 1 0.00 0.00 _free_queue
0.0 0.18 0.00 1 0.00 180.00 _main
0.0 0.18 0.00 1 0.00 0.00 _print_paycheck summary
0.0 0.18 0.00 1 0.00 180.00 _read_employees

November 19, 2004 © University of Colorado, 2004

Flat Profile Columns

= % time - the percentage of the total running
time of the program used by this function.

= cumulative seconds - a running sum of the
number of seconds accounted for by this
function and those listed above it.

= self seconds - the number of seconds
accounted for by this function alone. This is
the major sort for this listing.

s calls -the number of times this function was
invoked, if this function is profiled, else blank.

November 19, 2004 © University of Colorado, 2004 10

Flat Profile Columns, continued

= self ms/call - the average number of
milliseconds spent in this function per call,
this function is profiled, else blank.

= total ms/call - the average number of
milliseconds spent in this function and its
descendents per call, if this function is
profiled, else blank.

if

= name - the name of the function. This is the

minor sort for this listing.

November 19, 2004 © University of Colorado, 2004

11

i Call Graph (modified)

granularity: each sample hit covers 4 byte(s) for 5.56% of 0.18 seconds

called/total parents
index $time self descendents called+self name index
called/total children
0.00 0.18 203/203 _read_employees [3]
[1] 100.0 0.00 0.18 203 _insert_alphabetical [1]
0.15 0.03 203/203 _find alphabetical_locat
0.00 0.00 808/15925 _stringToUpper [6]
0.15 0.03 203/203 _insert_alphabetical [1]
[5] 99.2 0.15 0.03 203 _find alphabetical_location
0.03 0.00 15117/15925 _stringToUpper [6]
0.00 0.00 808/15925 _insert_alphabetical [1]
0.03 0.00 15117/15925 _find alphabetical_ locat
[6] 16.7 0.03 0.00 15925 _stringToUpper [6]

November 19, 2004 © University of Colorado, 2004 12

i Call Graph Description

= Each entry in this table consists of
several lines.

= The line with the index number at the
left hand margin lists the current
function.

= The lines above it list the functions that
called this function, and the lines below
it list the functions this one called.

November 19, 2004 © University of Colorado, 2004 13

i Call Graph Columns (Function)

index - A unique number given to each element of
the table.

= % time - percentage of the “total” time that was spent
in this function and its children.

= self - total amount of time spent in this function.

= children - total amount of time propagated into this
function by its children.

= called - number of times the function was called (plus
recursive calls)

November 19, 2004 © University of Colorado, 2004 14

i Call Graph Columns (Parents)

= self - amount of time that was propagated
directly from the function into this parent.

= children - amount of time propagated from
the function's children into this parent.

= called - number of times this parent called
the function / total number of times called.

= name - This is the name of the parent.

= If the parents of a function cannot be
determined, the word "<spontaneous>'is
printed in the "name’ field

November 19, 2004 © University of Colorado, 2004 15

i Call Graph Columns (Children)

= self - amount of time propagated
directly from the child into the function.

= children - amount of time propagated
from the child's children to the function.

= called - number of times the function
called this child / total number of times
the child was called.

= hame - This is the name of the child.

November 19, 2004 © University of Colorado, 2004 16

i Improving Performance

= When you have measured your code,
how do you make it go faster?

= There are several ways to optimize
= Changing algorithms
= Caching values (especially strings!)

= For graphics applications, reducing the
amount of drawing per frame

= and so on...

November 19, 2004 © University of Colorado, 2004

17

Demo: Graphics Application
i and gprof

= First Demo: consists of two versions of a
simple graphics applications; the first version
makes use of a dumb algorithm for updating
the screen; the second is much smarter and
much faster

= gprof - MacOS X (and other Unix variants)

have gprof; I'll step through a quick demo of
applying gprof to a C-based version of ezpay

November 19, 2004 © University of Colorado, 2004 18

