
Lecture 26: Profiling and gprof

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

November 19, 2004 © University of Colorado, 2004 2

Two Problems

Software often has performance problems

especially when handling a lot of data

or when placed in “real-time” situations

Developers often think they know the cause of such

problems

Without measuring the system at run-time, they make

changes, recompile, and discover that the performance

problems are still there

They often get caught up in “little” optimizations

making private data public; forcing the inlining of functions,

decreasing the modularity of code, etc.

November 19, 2004 © University of Colorado, 2004 3

80/20 Rule

These “little” optimizations often fail to

have an effect due to the 80/20 rule
80% of run-time is spent in about 20% of the code

So, you first need to find that 20% and focus your

optimization efforts there

optimizing the other 80% of the code, will not provide

much overall benefit (because that code is only rarely

executed!)

November 19, 2004 © University of Colorado, 2004 4

Profiling

In order to do this, we need some way of

measuring our program’s execution

in particular we need to know how long each part

of a program takes to execute

Performance profiling offers two techniques

for accomplishing this

Software Profiling

Hardware Profiling

November 19, 2004 © University of Colorado, 2004 5

Software Profiling

A compiler adds statements to a program that take
time measurements as it is running

Add statements to capture the current time at the beginning
and end of a function

Subtract to calculate the time spent in the function

Add the time spent to a running total

At the end of the program, calculate the percentage of
program time spent in the function by dividing its total time
by the total execution time of the program

Software profiling is less accurate because you are
changing the program you are trying to measure, but
it is easier to do

November 19, 2004 © University of Colorado, 2004 6

Hardware Profiling

Measurements are taken with hardware

Components are attached to the

motherboard and take timing

measurements without changing how

the program is run

November 19, 2004 © University of Colorado, 2004 7

gprof

gprof is an example of a software profiler. Its output is

divided into two sections

Flat Profile

The total time taken by each function

Call Graph

describes the call graph of the program

It shows what functions were called by other functions, and how

much time was taken by the children of a function

You can subtract the time taken by a function’s children from its

total time, to get its true time

November 19, 2004 © University of Colorado, 2004 8

Using gprof

Using gprof is a three step process

First, you must compile and load the program with the “-pg”

command flag

Second, you run the program…this generates a file called

gmon.out

Third, you invoke gprof with the command

gprof program gmon.out

gprof prints the flat profile and call graph information to standard

out; to save it use:

gprof program gmon.out > profiling-results

November 19, 2004 © University of Colorado, 2004 9

Example Flat Profile
granularity: each sample hit covers 4 byte(s) for 5.56% of 0.18 seconds

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 83.3 0.15 0.15 203 0.74 0.88 _find_alphabetical_location

 16.7 0.18 0.03 15925 0.00 0.00 _stringToUpper

 0.0 0.18 0.00 204 0.00 0.00 _format_currency

 0.0 0.18 0.00 203 0.00 0.00 _calculate_wages

 0.0 0.18 0.00 203 0.00 0.89 _insert_alphabetical

 0.0 0.18 0.00 1 0.00 0.00 _free_queue

 0.0 0.18 0.00 1 0.00 180.00 _main

 0.0 0.18 0.00 1 0.00 0.00 _print_paycheck_summary

 0.0 0.18 0.00 1 0.00 180.00 _read_employees

November 19, 2004 © University of Colorado, 2004 10

Flat Profile Columns

% time - the percentage of the total running
time of the program used by this function.

cumulative seconds - a running sum of the
number of seconds accounted for by this
function and those listed above it.

self seconds - the number of seconds
accounted for by this function alone. This is
the major sort for this listing.

calls - the number of times this function was
invoked, if this function is profiled, else blank.

November 19, 2004 © University of Colorado, 2004 11

Flat Profile Columns, continued

self ms/call - the average number of

milliseconds spent in this function per call, if

this function is profiled, else blank.

total ms/call - the average number of

milliseconds spent in this function and its

descendents per call, if this function is

profiled, else blank.

name - the name of the function. This is the

minor sort for this listing.

November 19, 2004 © University of Colorado, 2004 12

Call Graph (modified)
granularity: each sample hit covers 4 byte(s) for 5.56% of 0.18 seconds

 called/total parents

index %time self descendents called+self name index

 called/total children

 0.00 0.18 203/203 _read_employees [3]

[1] 100.0 0.00 0.18 203 _insert_alphabetical [1]

 0.15 0.03 203/203 _find_alphabetical_locat

 0.00 0.00 808/15925 _stringToUpper [6]

 0.15 0.03 203/203 _insert_alphabetical [1]

[5] 99.2 0.15 0.03 203 _find_alphabetical_location

 0.03 0.00 15117/15925 _stringToUpper [6]

 0.00 0.00 808/15925 _insert_alphabetical [1]

 0.03 0.00 15117/15925 _find_alphabetical_locat

[6] 16.7 0.03 0.00 15925 _stringToUpper [6]

November 19, 2004 © University of Colorado, 2004 13

Call Graph Description

Each entry in this table consists of
several lines.

The line with the index number at the
left hand margin lists the current
function.

The lines above it list the functions that
called this function, and the lines below
it list the functions this one called.

November 19, 2004 © University of Colorado, 2004 14

Call Graph Columns (Function)

index - A unique number given to each element of

the table.

% time - percentage of the “total” time that was spent

in this function and its children.

self - total amount of time spent in this function.

children - total amount of time propagated into this

function by its children.

called - number of times the function was called (plus

recursive calls)

November 19, 2004 © University of Colorado, 2004 15

Call Graph Columns (Parents)

self - amount of time that was propagated
directly from the function into this parent.

children - amount of time propagated from
the function's children into this parent.

called - number of times this parent called
the function / total number of times called.

name - This is the name of the parent.

If the parents of a function cannot be
determined, the word `<spontaneous>' is
printed in the `name' field

November 19, 2004 © University of Colorado, 2004 16

Call Graph Columns (Children)

self - amount of time propagated
directly from the child into the function.

children - amount of time propagated
from the child's children to the function.

called - number of times the function
called this child / total number of times
the child was called.

name - This is the name of the child.

November 19, 2004 © University of Colorado, 2004 17

Improving Performance

When you have measured your code,
how do you make it go faster?

There are several ways to optimize

Changing algorithms

Caching values (especially strings!)

For graphics applications, reducing the
amount of drawing per frame

and so on…

November 19, 2004 © University of Colorado, 2004 18

Demo: Graphics Application

and gprof

First Demo: consists of two versions of a

simple graphics applications; the first version

makes use of a dumb algorithm for updating

the screen; the second is much smarter and

much faster

gprof - MacOS X (and other Unix variants)

have gprof; I’ll step through a quick demo of

applying gprof to a C-based version of ezpay

