
Lecture 24: Agile Development and

Extreme Programming

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

November 12, 2004 © University of Colorado, 2004 2

Credit where Credit is Due

The material for this lecture is based on

content from “Agile Software

Development: Principles, Patterns, and

Practices” by Robert C. Martin

As such, some of this material is

copyright © Prentice Hall, 2003

November 12, 2004 © University of Colorado, 2004 3

Goals for this lecture

(Very) Briefly introduce the concepts of Agile

Design and Extreme Programming

Agile Design is a design framework

Extreme Programming is one way to

“implement” agile design

Other agile life cycles include SCRUM, Crystal,

feature-driven development, and adaptive

software development

See <http://www.agilealliance.org/> for pointers

November 12, 2004 © University of Colorado, 2004 4

Agile Development (I)

Agile development is a response to the
problems of traditional “heavyweight”
software development processes

too many artifacts

too much documentation

inflexible plans

late, over budget, and buggy software

November 12, 2004 © University of Colorado, 2004 5

Agile Development (II)

A manifesto (from the Agile Alliance)

“We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value

individuals and interactions over processes and tools

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

That is, while there is value in the items on the

right, we value the items on the left more

November 12, 2004 © University of Colorado, 2004 6

Agile Development (III)

From this statement of values, agile
development has identified twelve principles
that distinguish agile practices from traditional
software life cycles

Lets look at five of them
Deliver Early and Often to Satisfy Customer

Welcome Changing Requirements

Face to Face Communication is Best

Measure Progress against Working Software

Simplicity is Essential

November 12, 2004 © University of Colorado, 2004 7

Deliver Early and Often to Satisfy Customer

MIT Sloan Management Review published an
analysis of software development practices in 2001

Strong correlation between quality of software system and
the early delivery of a partially functioning system

the less functional the initial delivery the higher the quality of
the final delivery!

Strong correlation between final quality of software system
and frequent deliveries of increasing functionality

the more frequent the deliveries, the higher the final quality!

Customers may choose to put initial/intermediate
systems into production use; or they may simply
review functionality and provide feedback

November 12, 2004 © University of Colorado, 2004 8

Welcome Changing Requirements

Welcome change, even late in the project!

Statement of Attitude

Developers in agile projects are not afraid of

change; changes are good since it means our

understanding of the target domain has increased

Plus, agile development practices (such as

refactoring) produce systems that are flexible and

thus easy to change

November 12, 2004 © University of Colorado, 2004 9

Face to Face Communication is Best

In an agile project, people talk to each other!

The primary mode of communication is

conversation

there is no attempt to capture all project information in

writing

artifacts are still created but only if there is an

immediate and significant need that they satisfy

they may be discarded, after the need has passed

November 12, 2004 © University of Colorado, 2004 10

Measure Progress against Working Software

Agile projects measure progress by the

amount of software that is currently

meeting customer needs

They are 30% done when 30% of required

functionality is working AND deployed

Progress is not measured in terms of

phases or creating documents

November 12, 2004 © University of Colorado, 2004 11

Simplicity is Essential

This refers to the art of maximizing the
amount of work NOT done

Agile projects always take the simplest
path consistent with their current goals

They do not try to anticipate tomorrow’s
problems; they only solve today’s problems

High-quality work today should provide a
simple and flexible system that will be easy
to change tomorrow if the need arises

November 12, 2004 © University of Colorado, 2004 12

Extreme Programming

Extreme Programming (XP) takes
commonsense software engineering
principles and practices to extreme levels

For instance
“Testing is good?”

then

“We will test every day” and “We will write test cases
before we code”

As Kent Beck says extreme programming
takes certain practices and “sets them at 11
(on a scale of 1 to 10)”

November 12, 2004 © University of Colorado, 2004 13

XP Practices

The best way to describe XP is by looking at

some of its practices

There are fourteen standard practices, we’ll look

at six important ones

Customer Team Member

User Stories

Pair Programming

Test-Driven Development

Collective Ownership

Continuous Integration

November 12, 2004 © University of Colorado, 2004 14

Customer Team Member

The “customer” is made a member of the

development team

A customer representative should be “in the same

room” or at most 100 feet away from the

developers

“Release early; Release Often” delivers a working

system to the client organization; in between, the

customer representative provides continuous

feedback to the developers

November 12, 2004 © University of Colorado, 2004 15

User Stories (I)

We need to have requirements

XP requirements come in the form of
“user stories” or scenarios

We need just enough detail to estimate
how long it might take to support this story

avoid too much detail, since the requirement
will most likely change; start at a high level,
deliver working functionality and iterate based
on explicit feedback

November 12, 2004 © University of Colorado, 2004 16

User Stories (II)

User stories are not documented in detail
we work out the scenario with the customer “face-
to-face”; we give this scenario a name

the name is written on an index card
developers then write an estimate on the card based on
the detail they got during their conversation with the
customer

The index card becomes a “token” which is
then used to drive the implementation of a
requirement based on its priority and
estimated cost

November 12, 2004 © University of Colorado, 2004 17

Pair Programming

All production code is written by pairs of programmers working

together at the same workstation

One member drives the keyboard and writes code and test cases;

the second watches the code, looking for errors and possible

improvements

The roles will switch between the two frequently

Pair membership changes once per day; so that each programmer

works in two pairs each day

this facilitates distribution of knowledge about the state of the code

throughout the entire team

Studies indicate that pair programming does not impact

efficiency of the team, yet it significantly reduces the defect rate!

[Laurie Williams, 2000] [Alistair Cockburn, 2001] [J. Nosek, 1998]

November 12, 2004 © University of Colorado, 2004 18

Test-Driven Development

All production code is written in order to make failing

test cases pass

First, we write a test case that fails since the required

functionality has not yet been implemented

Then, we write the code that makes that test case pass

Iteration between writing tests and writing code is very short;

on the order of minutes

As a result, a very complete set of test cases is

written for the system; not developed after the fact

November 12, 2004 © University of Colorado, 2004 19

Collective Ownership

A pair has the right to check out ANY module
and improve it

Developers are never individually responsible for a
particular module or technology

Contrast this with Fred Brook’s conceptual
integrity and the need for a small set of
“minds” controlling a system’s design

Apparent contradiction is resolved when you note
that XP is designed for use by small programming
teams; I haven’t seen work that tries to scale XP to
situations that require 100s or 1000s of
developers

November 12, 2004 © University of Colorado, 2004 20

Continuous Integration

Developers check in code and integrate it into
the larger system several times a day

Simple Rule: first one to check-in “wins”;
everyone else merges

Entire system is built every day; if the final
result of a system is a CD, a CD is burned
every day; if the final result is a web site, they
deploy the web site on a test server, etc.

This avoids the problem of cutting integration
testing to “save time and money”

