
Lecture 19: Functional Testing

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

October 25, 2004 © University of Colorado, 2004 2

Brief Review

Program Verification
A program is correct if it meets its requirements specification

Requirements Specs
F(input) = output

Functional Contract, should be as specific as possible

Test Cases
Input, Documentation, and Expected Output;

Test Suite - a collection of test cases

Test Run
Run each test case and record pass/fail

repeat until all tests pass

October 25, 2004 © University of Colorado, 2004 3

Major Problem

How do you pick test cases?

Two main approaches
Functional Testing

a.k.a. Black Box Testing

Structural Testing
a.k.a. White Box Testing

Note: current testing research has moved beyond
these concepts…

folding and sampling techniques are current

…but they are used in this class as an introduction

October 25, 2004 © University of Colorado, 2004 4

Functional Testing

In functional testing, we test the

functionality of the system without

regard to its implementation

The system is, in a sense, a black box

because we cannot look inside to see how it

computes its output

We provide input and receive output

October 25, 2004 © University of Colorado, 2004 5

Functional Testing, continued

Functional Testing is a strategy for helping a
software engineer pick test cases

This is useful, since selecting test cases is a
tricky problem

A test suite should be “complete”…
with respect to the program’s specification

but how many test cases do you need to be complete?

A test suite should be precise
no duplicate test cases

if a test suite takes too long to run, then it will get run less
often (which increases the chance that a fault goes
undetected)

October 25, 2004 © University of Colorado, 2004 6

Functional Testing, continued

Functional testing helps create test suites by

providing a criterion for selecting test cases:

The requirements specification of a program lists functions

that the program must perform

A test suite is complete when it tests every function

For each function, determine “categories” of input that a

function should treat equivalently

boundary conditions can be useful guides

test both “typical” input and error conditions

a test suite will need at least one test case for each category

associated with each function

October 25, 2004 © University of Colorado, 2004 7

Functional Testing: Step 1

Identify functional categories in the

requirements specification that broadly

classifies functions the program must perform

Example: A database of cars (for a car

dealer)

Persistence of Information

Generation of Reports

Sorting

October 25, 2004 © University of Colorado, 2004 8

Functional Testing: Step 2

Identify specification items in the spec that correspond to
functions the program must perform

Each item should be assignable to one of your functional
categories

Could be an iterative process, in which a specification item
identifies a new functional category

Car Database Example:

Generate a report listing all cars in inventory by their identification
number from smallest to largest (report generation, sorting)

Generate a report listing all cars in inventory by the time a car has
been in inventory from longest to shortest (report generation,
sorting)

Information on car sales must be stored for at least two years
(persistence of information)

October 25, 2004 © University of Colorado, 2004 9

Functional Testing: Step 3

Identify functional equivalence classes for each
specification item (like the GCD example in lecture
17)

Consider the first function of the car database
List cars in inventory by identification number

The functional classes might be
Database has zero cars

Database has one car

Database has many cars

Cars have only been entered into the database

Cars have been entered and then deleted

October 25, 2004 © University of Colorado, 2004 10

Step 3, continued

The functional classes might be… (continued)

Cars have been entered, deleted, and then re-entered into
database

Cars were entered in the order that they should be printed

Cars were entered in the opposite order that they should be printed

Cars were entered in a random order

Database has two cars with the same identification number

Discussion

This is way more functional equivalence classes than normal,
in fact, when you find a item like this it might be good to split the
specification item like

List cars in inventory by id

Sort cars in inventory by id

October 25, 2004 © University of Colorado, 2004 11

Functional Testing: Step 4

Determine inputs for each functional class

e.g. pick test cases!

Each class should have its boundaries tested along with

some “middle” case

Identifying test cases

Database has zero cars: one test case

Database has one car: one test case

Database has many cars: two test cases

one with two cars (a boundary condition) and one with more

than two cars

If a maximum had been specified we would test that too

October 25, 2004 © University of Colorado, 2004 12

Step 4, continued

Identifying test cases

Cars have only been entered into the database: one test

case

Cars have been entered and then deleted: two test cases

one extra car entered and then deleted and more than one

extra car entered and then deleted

Cars have been entered, deleted, and re-entered: three test

cases

one was deleted and re-entered

more than one was deleted, and one was re-entered

more than one was deleted and re-entered

October 25, 2004 © University of Colorado, 2004 13

Functional Testing: Step 5

Determine the number of test cases for each function

There are two ways to do this

Add each of the test cases for each equivalence class

together, or

Look for orthogonal sets of equivalence classes that can be

combined and multiply their test cases

We will be using the “addition” method for the testing notebook

Orthogonal here means equivalence classes that test

distinctly different things

in our example, we have three equivalence classes that deal

with the number of cars, and three which deal with how they

were entered into the database

October 25, 2004 © University of Colorado, 2004 14

Method 1

Adding test cases

zero cars : 1

one car : 1

more than one car : 2

entered only : 1

deleted : 2

deleted and re-entered: 3

Total : 10

October 25, 2004 © University of Colorado, 2004 15

Method 2

Multiplying Test Cases

(1 + 1 +2) * (1 + 2 + 3) = 4 * 6 = 24

Think about it like this (12 of the 24 shown):
 entered one multiple one deleted
 only deleted deleted one re-entered
zero

cars
one
car

two
cars

October 25, 2004 © University of Colorado, 2004 16

Functional Testing: Step 6

Eliminate redundant test cases

For example zero cars in the database will probably be a

functional equivalence class for several different spec. items;

A single test will cover that functional class for all such items

Prioritize test cases

You may not have the time or budget to test them all

As such, give critical test cases higher priority…

…while test cases that test obscure or uncommon errors can

be given lower priority

You now have your test suite!

