
Lecture 18: Requirements Specifications

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

October 22, 2004 © University of Colorado, 2004 2

Requirements Specifications

Why do we need them?

A specification is a clear statement of intent

Clear intentions are more easily translated into “sharp”

milestones (Brooks, pg. 154-155) that are easy to track

and evaluate

A specification should be as specific and detailed as

possible

A specification is a contract between a customer

and a supplier

desktop software: suffers from not having a clear contract

specified before the software is developed

October 22, 2004 © University of Colorado, 2004 3

Specifications: The Good, the Bad, and the Ugly

Specifications cover many topics
The Good

specified conditions of correct operation

When the user closes a document window, the associated
data file is saved and closed

The Bad
specified error conditions

If the file system reports an error during a save operation,
the file’s associated document window is not closed and
the user is notified of the error

The Ugly
unspecified Conditions (!!)

October 22, 2004 © University of Colorado, 2004 4

Specifying Input

Users are unpredictable!
Do not specify input that a program may receive

Instead, specify a function from input to output
F(input) = output

Example
Upon input of an integer from 1 to 100 inclusive,
the program will determine if its input is prime and
report its results to the user

Any input other than an integer from 1 to 100 inclusive,
including integers outside the range of 1 to 100, non-
whole numbers, and non-numeric input will result in an
error message

October 22, 2004 © University of Colorado, 2004 5

Discussion

The example is very specific

It defines its legal inputs carefully and specifies

illegal inputs explicitly

It defines “what” the program should do, not “how”

the program should do it

Given these requirements you can create several

alternative designs that satisfy them

For instance, a system that uses speech input and output

is perfectly acceptable, as is a system with a graphical

user interface or a command line interface

October 22, 2004 © University of Colorado, 2004 6

Specifying “What” not “How”

A requirements specification specifies the behavior

of an application, not its implementation

Specifying Implementation

The program must have a linked list to hold pending alarms.

Each alarm in the list is a structure containing the date, hour,

and minute the alarm should sound. The list should be

sorted according to time.

Specifying requirements

The program shall provide an alarm clock feature. A user

can specify multiple alarms. Each alarm rings the computer’s

bell when it is activated.

October 22, 2004 © University of Colorado, 2004 7

More on specifying behavior

A requirements specification is the first
document created for a program

Specifying a program’s behavior allows for
maximum flexibility during design and
implementation

It answers the question: “Why am I writing this
program?”

Specifying implementation first, on the other hand
discourages the consideration of alternatives

It constrains the design inappropriately

October 22, 2004 © University of Colorado, 2004 8

Formal and Informal Specs.

Specifications can be informal

natural language based
no matter how hard you try, natural language
specifications will always have some degree of
ambiguity

or formal

based on a mathematical model

typically requires training to use and apply
correctly

October 22, 2004 © University of Colorado, 2004 9

Example Informal

Specification

The meaning of integer division, div(a, b), is

the same as floating point division with the

fractional part rounded off towards zero.

The meaning of modulo, mod(a, b), is the

value of the fractional part that would be

rounded off by div(a, b).

October 22, 2004 © University of Colorado, 2004 10

Example Formal Specification

div(a, b) = integer q, such that

0 (a - b * q) < |b| if a > 0

0 (a -b * q) > -|b| if a < 0

0 if a = 0

mod(a, b) = a - (div(a,b) * b)

October 22, 2004 © University of Colorado, 2004 11

More on Formal Specifications

Being based on a mathematical model means

every symbol is well defined

syntax

how is a symbol combined with other symbols

semantics

what is the symbol’s meaning, how does it behave

Formal specs often reuse information

In our previous slide, we did not define the greater

than, less than, and equals symbols;

October 22, 2004 © University of Colorado, 2004 12

Trade-offs between formal

and informal specs

Formal specs are not always better than informal ones
In early stages of a development project, you may not know
or understand enough to create a formal spec

an informal spec can serve as a starting point

Formal specs are often difficult to understand

This can discourage people from using them

An informal spec can be used to annotate and explain a formal
spec

Formal specs are typically expensive to create

They require specially trained workers

Not all parts of a project need to be formally specified: use
formal specs where its absolutely critical that a program
behaves as specified; such as flight control software

October 22, 2004 © University of Colorado, 2004 13

Brooks’ Corner: The Whole

and the Parts

How does one build a successful
program?

Focus on the specifications and test them!
Testing should be preformed by an external
group

Top-down Design
Design as a set of refinement steps

Use of abstraction at each level

Modular decomposition

October 22, 2004 © University of Colorado, 2004 14

The Whole and the Parts, cont.

Other techniques

Structured Programming

Component Debugging

System Debugging
Use debugged components (reuse)

Build scaffolding (stubs, test data)

Control Changes

Add one component at a time, and quantize
updates

