q Lecture 17: Program Verification

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2004

i Today’s Lecture

= Introduce the concept of program verification
= specifications
= terminology
= debugging
= testing

= Cover “Passing the Word” in Brooks’ Corner
= This chapter will set us up for the next lecture

October 18, 2004 © University of Colorado, 2004 2

i Program Verification

= Program Verification is the process of
demonstrating that a particular
program meets its specification

= If a program meets its specification it is
considered “correct”

October 18, 2004 © University of Colorado, 2004 3

:L Program Correctness

= To repeat: a program is correct only when
it meets (i.e. implements) its specification

= This does not mean that the program is
actually useful!

= In order for it to be useful, the specification has to
match the needs of the program’s users
= Furthermore, what happens if the
specification contains an error (i.e. it doesn’t
specify the user’s requirements correctly)

= The program is still “correct”; but the program is
not actually meeting the needs of its users

October 18, 2004 © University of Colorado, 2004 4

Program Specifications

= You can view a program’s specification abstractly as
a function that maps the program’s inputs to its
expected outputs
= F(input) = output
= e.g. if you click on this button, a menu pops up
= F(click on button) = menu pops up
= Remember that this way of thinking is “an
abstraction”

= The “real world” is much more complex. For instance, a
program may be “correct” on a machine with 64MB of
memory, but fail on a machine with 32MB of memory

= This type of error is related to the “non-functional” requirements

:L Testing Terminology

= Error - a mistake made by a programmer
= implies that for some input i, F(i) # expected output

= Fault - an incorrect state of a program that is entered
because of the error

= Some errors don’t cause failures right away, every state
between the error and the failure are faults

= For this class, however, you can think of a “fault” as being
the location in the code where the error exists

= Failure - a symptom of an error
= e.g. acrash, incorrect output, incorrect behavior, ...

of a system
= In this class, we will be focusing on “functional” regs. only
October 18, 2004 © University of Colorado, 2004 5 October 18, 2004 © University of Colorado, 2004 6
Testing Terminology, cont. An Example

= Discussion

= A failure occurs only if a fault occurs, and a
fault occurs only if an error exists

= Note: not all faults are detected

= because you may need to execute a specific portion (e.g.
state) of the program for the failure to appear...

= ...and it may be impossible to execute all “states” of a
program
= Recall that Fred Brooks in No Silver Bullet talked
about complexity and one aspect of complexity is
the sheer number of states associated with
software systems

October 18, 2004 © University of Colorado, 2004 7

= If a program contains an error, it does not necessarily lead to a
failure
if (x <y) /* should be <="*/

else

= The error may be a typo, or the error could be the result of the
programmer not understanding the problem

= The fault is the location of the error, e.g. the expression
contained in the if statement, or more explicitly the missing

= A failure may occur if x==y and this if statement is executed

October 18, 2004 © University of Colorado, 2004 8

i Creating Correct Programs

= Strategy One: Error Prevention

= Employ techniques to avoid errors in the
first place
« Software Reuse!
= Create Solid Designs

before you even write code!
UML class diagrams, sequence diagrams, etc.

=« Smart Programming Environments
auto-balance, syntax coloring, etc.

October 18, 2004 © University of Colorado, 2004 9

:L Creating Correct Programs, cont.

= Strategy Two: Debugging

= The process of discovering and eliminating
faults
= Tools can help with this
= compiler warnings, source debuggers
= Review can help as well
= Code Inspections

October 18, 2004 © University of Colorado, 2004 10

i Creating Correct Programs, cont.

= Strategy Three: Testing

= The process of discovering failures and locating
the faults which cause them
= Give input to program, compare with expected
output
= The input / expected output is known as a test case
= Testing involves creating test cases that “cover” (or
rather “uncover”) different types of failures
= Module and Integration Testing is done by
developers (or QA), system testing is done by the
customer!

October 18, 2004 © University of Colorado, 2004 11

:L Creating Test Cases

= A test case consists of
= Input
= The specific values given to the program
= Expected output

= The output predicated by the program’s
specification

= Documentation
=« What type of failure is this test case testing?

October 18, 2004 © University of Colorado, 2004 12

Test Runs

= Test cases are applied to a program during a test
run. A test run consists of:

= Actual Output

= The output generated by the program when given the input of
the test case

= Pass/Fail Grade
= Did the actual output match the expected output
= Test runs are typically supported by a “testing
harness” or “test scaffolding”

= This refers to the software that helps you perform (or sometimes
automate) testing runs

October 18, 2004 © University of Colorado, 2004 13

Testing Process

1. For each class of
failure defined in
the documentation

Input | |Documentation

\ 4

2. For each test case in

Program | | Expected Output

that class

3. Apply the input and
compare the output to
the specification

A4
Actual Output

4. Record results #
5. Fix problems Diff |«
6. Repeat until all !
test cases pass Pass/Fail
October 18, 2004 © University of Colorado, 2004 14

Creating Test Cases

= How do you pick test cases?

= We will look at two strategies for doing this
= Black Box Testing
= White Box Testing
= For now, think of trying to pick “categories” of input
that test the same thing

= €e.g. its impossible to “exhaustively” test a program, but if
your categories contain values that all test the same
thing, you can get by with using just a single value from
each category

October 18, 2004 © University of Colorado, 2004 15

Example

int GreatestCommonDivisor(int x, int y)

= X=6y=9, returns 3, tests common case

= X=2y=4, returns 2, tests when x is the GCD
= X=3y=5, returns 1, tests two primes

= X=9y=0, returns ?, tests zero

= X=-3y=9, returns ?, tests negative

= To test exhaustively is impossible (both parameters can
take on an infinite number of values)

= but with 5 categories identified, we can get by with only 5
test cases!

October 18, 2004 © University of Colorado, 2004 16

iBrooks’ Corner: Passing the Word

= Communicating Design Decisions

= Written Specifications

= “The Manual”
Answers questions
Conceptual Integrity
Demands high precision

= Formal Definitions
= Natural language is not precise
= Formal notations have been developed to help

October 18, 2004 © University of Colorado, 2004 17

:L Formal Definitions

= Notations help express precise semantics

= However, natural language is often needed to
“explain” the meaning to the uninitiated

= What about using an implementation?
= Benefits: Precise specification

= Disadvantages: Over-prescription, potential for
inelegance, may be modified!

October 18, 2004 © University of Colorado, 2004 18

:L Communicating Design, continued

= Meetings

= Weekly half-day meetings

= Problems and change proposals distributed
beforehand

= Chief architect has final say

= Annual “Supreme Court” sessions
= Typically lasts two weeks
= Agenda typically had 200 items!

October 18, 2004 © University of Colorado, 2004 19

i Communicating Design, continued

= Multiple Implementations

= Inconsistencies between implementations can
identify problems in the specs;

= With only one implementation, its easier to change the
manual!

= The Telephone Log

= Or, be sure to capture all decisions made by the
chief programmer!

s Product Test

= An external test group keeps the implementation
honest

October 18, 2004 © University of Colorado, 2004 20

