
Lecture 17: Program Verification

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

October 18, 2004 © University of Colorado, 2004 2

Today’s Lecture

Introduce the concept of program verification

specifications

terminology

debugging

testing

Cover “Passing the Word” in Brooks’ Corner

This chapter will set us up for the next lecture

October 18, 2004 © University of Colorado, 2004 3

Program Verification

Program Verification is the process of

demonstrating that a particular

program meets its specification

If a program meets its specification it is

considered “correct”

October 18, 2004 © University of Colorado, 2004 4

Program Correctness

To repeat: a program is correct only when
it meets (i.e. implements) its specification

This does not mean that the program is
actually useful!

In order for it to be useful, the specification has to
match the needs of the program’s users

Furthermore, what happens if the
specification contains an error (i.e. it doesn’t
specify the user’s requirements correctly)

The program is still “correct”; but the program is
not actually meeting the needs of its users

October 18, 2004 © University of Colorado, 2004 5

Program Specifications

You can view a program’s specification abstractly as
a function that maps the program’s inputs to its
expected outputs

F(input) = output

e.g. if you click on this button, a menu pops up

F(click on button) = menu pops up

Remember that this way of thinking is “an
abstraction”

The “real world” is much more complex. For instance, a
program may be “correct” on a machine with 64MB of
memory, but fail on a machine with 32MB of memory

This type of error is related to the “non-functional” requirements
of a system

In this class, we will be focusing on “functional” reqs. only
October 18, 2004 © University of Colorado, 2004 6

Testing Terminology

Error - a mistake made by a programmer

implies that for some input i, F(i) expected output

Fault - an incorrect state of a program that is entered

because of the error

Some errors don’t cause failures right away, every state

between the error and the failure are faults

For this class, however, you can think of a “fault” as being

the location in the code where the error exists

Failure - a symptom of an error

e.g. a crash, incorrect output, incorrect behavior, …

October 18, 2004 © University of Colorado, 2004 7

Testing Terminology, cont.

Discussion
A failure occurs only if a fault occurs, and a
fault occurs only if an error exists

Note: not all faults are detected
because you may need to execute a specific portion (e.g.
state) of the program for the failure to appear…

…and it may be impossible to execute all “states” of a
program

Recall that Fred Brooks in No Silver Bullet talked
about complexity and one aspect of complexity is
the sheer number of states associated with
software systems

October 18, 2004 © University of Colorado, 2004 8

An Example

If a program contains an error, it does not necessarily lead to a

failure

if (x < y) /* should be <= */
…

else
…

The error may be a typo, or the error could be the result of the

programmer not understanding the problem

The fault is the location of the error, e.g. the expression

contained in the if statement, or more explicitly the missing “=”

A failure may occur if x==y and this if statement is executed

October 18, 2004 © University of Colorado, 2004 9

Creating Correct Programs

Strategy One: Error Prevention

Employ techniques to avoid errors in the

first place

Software Reuse!

Create Solid Designs

before you even write code!

UML class diagrams, sequence diagrams, etc.

Smart Programming Environments

auto-balance, syntax coloring, etc.

October 18, 2004 © University of Colorado, 2004 10

Creating Correct Programs, cont.

Strategy Two: Debugging

The process of discovering and eliminating

faults

Tools can help with this

compiler warnings, source debuggers

Review can help as well

Code Inspections

October 18, 2004 © University of Colorado, 2004 11

Creating Correct Programs, cont.

Strategy Three: Testing
The process of discovering failures and locating
the faults which cause them

Give input to program, compare with expected
output

The input / expected output is known as a test case

Testing involves creating test cases that “cover” (or
rather “uncover”) different types of failures

Module and Integration Testing is done by
developers (or QA), system testing is done by the
customer!

October 18, 2004 © University of Colorado, 2004 12

Creating Test Cases

A test case consists of

Input

The specific values given to the program

Expected output

The output predicated by the program’s

specification

Documentation

What type of failure is this test case testing?

October 18, 2004 © University of Colorado, 2004 13

Test Runs

Test cases are applied to a program during a test

run. A test run consists of:

Actual Output

The output generated by the program when given the input of

the test case

Pass/Fail Grade

Did the actual output match the expected output

Test runs are typically supported by a “testing

harness” or “test scaffolding”
This refers to the software that helps you perform (or sometimes

automate) testing runs

October 18, 2004 © University of Colorado, 2004 14

Testing Process

DocumentationInput

Program

Actual Output

Expected Output

Diff

Pass/Fail

1. For each class of
failure defined in
the documentation
2. For each test case in
that class
3. Apply the input and
compare the output to
the specification
4. Record results
5. Fix problems
6. Repeat until all
test cases pass

October 18, 2004 © University of Colorado, 2004 15

Creating Test Cases

How do you pick test cases?

We will look at two strategies for doing this

Black Box Testing

White Box Testing

For now, think of trying to pick “categories” of input

that test the same thing

e.g. its impossible to “exhaustively” test a program, but if

your categories contain values that all test the same

thing, you can get by with using just a single value from

each category

October 18, 2004 © University of Colorado, 2004 16

Example

int GreatestCommonDivisor(int x, int y)

x=6 y=9, returns 3, tests common case

x=2 y=4, returns 2, tests when x is the GCD

x=3 y=5, returns 1, tests two primes

x=9 y=0, returns ?, tests zero

x=-3 y=9, returns ?, tests negative

To test exhaustively is impossible (both parameters can

take on an infinite number of values)

but with 5 categories identified, we can get by with only 5

test cases!

October 18, 2004 © University of Colorado, 2004 17

Brooks’ Corner: Passing the Word

Communicating Design Decisions

Written Specifications

“The Manual”

Answers questions

Conceptual Integrity

Demands high precision

Formal Definitions

Natural language is not precise

Formal notations have been developed to help

October 18, 2004 © University of Colorado, 2004 18

Formal Definitions

Notations help express precise semantics

However, natural language is often needed to

“explain” the meaning to the uninitiated

What about using an implementation?

Benefits: Precise specification

Disadvantages: Over-prescription, potential for

inelegance, may be modified!

October 18, 2004 © University of Colorado, 2004 19

Communicating Design, continued

Meetings

Weekly half-day meetings

Problems and change proposals distributed

beforehand

Chief architect has final say

Annual “Supreme Court” sessions

Typically lasts two weeks

Agenda typically had 200 items!

October 18, 2004 © University of Colorado, 2004 20

Communicating Design, continued

Multiple Implementations
Inconsistencies between implementations can
identify problems in the specs;

With only one implementation, its easier to change the
manual!

The Telephone Log
Or, be sure to capture all decisions made by the
chief programmer!

Product Test
An external test group keeps the implementation
honest

