
Lecture 14: Configuration
Management & Midterm Review

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

October 8, 2004 © University of Colorado, 2004 2

Review of Versioning

Versioning involves
tracking the changes to a file between editing
sessions

providing services that make each version
persistent and retrievable

providing support for complex dependencies
between versions such as extensions, splits, and
merges

Note: the emphasis is on a single file

What about collections of files?

October 8, 2004 © University of Colorado, 2004 3

Configuration Management

Versioning a collection of files is known as
configuration management

A collection can occur at many levels of
granularity

the collection of files that make up a module

the collection of files that make up a library

the collection of files that make up a subsystem

etc.

NOTE: each file is still individually versioned,
but now we can track the configuration to
which a particular version belongs

October 8, 2004 © University of Colorado, 2004 4

Relation of Versioning to CM

1

2

2.1

3

4

5

… release as
version 1.0

…
release as
version 1.1

… release as
version 2.0

Remember, in last
lecture, how the version
number (1, 2, 3, etc.) had
nothing to do with the
release number (1.0,
1.1, etc.)?

The release number is
the version number of
a configuration!

October 8, 2004 © University of Colorado, 2004 5

Configuration Management
Example

Particular versions of files
are included in…

… specific versions
of collections

File A File B
1

2

3 4

5

1

2

3

4 5

Collection A, 0.1

Collection A, 1.0

Collection A, 1.2

1 1

3 2

5 4

October 8, 2004 © University of Colorado, 2004 6

Configuration Management, cont.

Configurations become first-class objects that can be
manipulated by explicit commands

(Versions of) Files can be added/removed from
configurations

Configurations can be checked in and checked out
This helps with bug tracking, if a customer reports a bug on
release 1.3, the software engineer can check out a clean copy
of release 1.3 without affecting the current release

Each developer can have their own copy of a configuration;
changes to collections are handled similarly to changes to
individual files

Configurations can be automatically built and packaged for
deployment

October 8, 2004 © University of Colorado, 2004 7

Configuration Management Tools

Unfortunately, most configuration management tools
are commercial systems

ClearCase, Continuus, Razor, TrueChange

Tools like RCS and CVS are versioning systems
CVS has only one feature that provides a configuration
management-like capability

Its called “tags” and it allows you to tag a particular version of a
file with a release number…

… but that’s it! It does not have an explicit notion of collections
that can be versioned independent of its individual files

However, the open source community has recently
released a new configuration management system
called subversion: <http://subversion.tigris.org/>

October 8, 2004 © University of Colorado, 2004 8

Midterm Review

In-Class Midterm on Monday

worth 100 points

This review is presented at a high-level

We can go back to slides from previous lectures in
response to questions

October 8, 2004 © University of Colorado, 2004 9

No Silver Bullet

Fred Brooks claims there is no silver bullet to solve
the “software crisis”

A silver bullet would be a single technique that leads to an
order of magnitude improvement in the production of
software

He divides the problems facing software engineers
into accidental and essential difficulties

The essential difficulties include complexity, changeability,
conformity, and invisibility

October 8, 2004 © University of Colorado, 2004 10

Fred Brooks Continued

Other chapters covered in MMM

Tar Pit
Programming System ; Joys and Woes of Craft

The Mythical Man-Month
Adding people to a late project…

The Surgical Team
Formalizing communication paths

Aristocracy, Democracy, and System Design
Conceptual Integrity

October 8, 2004 © University of Colorado, 2004 11

Fred Brooks, continued

The Second System Effect
Architects need extra self discipline on second
system in a class of programs

Beware changes in assumptions between
versions

Why Did the Tower of Babel Fail?
Communication, Project Workbook, Director and
Producer

Software Tools
Generic vs. Specific Tools

October 8, 2004 © University of Colorado, 2004 12

Deployment

Deployment is the process of delivering software to a
user after it has been created

We want this process to be “engineered”

We need to support the deployment lifecycle

Producer Side

New Release and/or Update

Retirement (of obsolete versions)

Consumer Side

Install/Uninstall

Update

Adapt (to changing environment)

Reconfigure (to meet new needs)

October 8, 2004 © University of Colorado, 2004 13

Unix and the Shell

The Unix Architecture is split
between user-level programs, the kernel, and devices

The Shell is a user-level program that provides an
interpreted programming environment

Shell Variables/Environment Variables

Math Operations/C Operators

Input/Output Redirection

Job Control

Control Flow Constructs

October 8, 2004 © University of Colorado, 2004 14

Pattern Matching

Wildcards
Used to match sequences of characters, digits, etc.

“a*.c” - all files that start with a, have any number (including
zero) of characters or digits after the a, and end in .c

abc.c, a.c, a123.c, …

Regular Expressions
Used to match sequences of patterns

ab*c, matches zero or more instances of the pattern “ab”
followed by the pattern “c”

c, abc, ababc, abababc, etc.

October 8, 2004 © University of Colorado, 2004 15

Find & Grep

Find
Tool to search directories and files

via sequences of boolean operations

Makes use of wildcards and can invoke external operators

Grep
General Regular Expression Processor

Tool to search the contents of files using regular expressions

Both help software engineers deal with large systems
(that is, they are scalable)

October 8, 2004 © University of Colorado, 2004 16

Build Management

An engineered process for building
software systems

Process can be supported by tools

e.g. Make

These tools attack accidental difficulties

They free developers from having to remember
code dependencies

October 8, 2004 © University of Colorado, 2004 17

Make

Makefiles are specifications that provide precise
control over build management

If something changes, only those files impacted by the
change are recompiled (as opposed to the entire system)

Make is well-integrated with Unix/C and provides
rules: targets, dependencies, and actions

macros (variables), VPATH, and automatic variables

pattern matching and implicit rules

October 8, 2004 © University of Colorado, 2004 18

Software Reuse

Software consists of

source code, binaries, requirements and design documents, etc.

Any of these parts can be re-used

Requirements and Design re-use is especially powerful since we
are attacking essential difficulties when we create this type of
information

Source code and object code re-use

Pros: Source code can be modified, Object code does not need to
be recompiled

Cons: Source code has to be modified(!), Object code can not be
extended and is architecture specific

October 8, 2004 © University of Colorado, 2004 19

Unix Libraries

A technique for re-using collections of object code

Enabled by marshalling
rules for passing parameters to object code; requires object
code and .h files

ar is used to create libraries
naming convention: libname.a

Compilers provide -I, -L, -l flags to use libraries

October 8, 2004 © University of Colorado, 2004 20

Versioning & RCS

Version Control
Track changes to a file between editing sessions

Version Graph supports extension, split, and merge and is
stored in a version control file’

Version control files make use of deltas to save space

Version control systems provide check-in, check-out, and
other capabilities

RCS: backward-delta version control system
numbering scheme: branch number.version number

ci and co are primary commands; rcs, rlog, rcsdiff

Provides Keywords like $Author$

