
Lecture 11: Unix Libraries

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

September 27, 2004 © University of Colorado, 2004 2

Reuse in a Unix Environment

Two commonly reused software objects in Unix

environments

source code

object code

Source code Reuse

Pro: Can modify to suit new context

Con: MUST modify to suit new context

Object code Reuse

Pro: No compilation required; just header file and lib

Con: No ability to change functionality; Arch-specific

September 27, 2004 © University of Colorado, 2004 3

Libraries

Unix Library

a collection of object files, used for some purpose

e.g. math libraries, graphics libraries, etc.

Can be reused in other programs

The rules of marshalling (covered in last lecture)

ensure that the compiler knows how to call the

object code contained in the library

Remember that object code is architecture-specific

September 27, 2004 © University of Colorado, 2004 4

Creating a Library

Compile .c files to create .o files

Use the ar command to create a library from

the .o files

The .o files are stored in the archive such that they

can be extracted at a later time

This allows a linker to be smart about using the

object code in libraries

e.g. only those functions used are placed in the linked

executable

September 27, 2004 © University of Colorado, 2004 5

Example

main.c

#include “main.h”

main(){
subject();

verb();

}

s1.c

int subject() {
printf(“Jane ”);

}

s2.c

int subject(){
printf(“Ken ”);

}

v1.c

int verb() {
printf(“codes.”);

}

v2.c

int verb(){
printf(“debugs.”);

}

main.h

int subject();

int verb();

September 27, 2004 © University of Colorado, 2004 6

Example, continued

First, compile the support files

g++ -c s1.c

g++ -c s2.c

g++ -c v1.c

g++ -c v2.c

Second, create two different libraries

ar -r libWords1.a s1.o v1.o

ar -r libWords2.a s2.o v2.o

This creates two separate libraries

libWords1.a and libWords2.a

September 27, 2004 © University of Colorado, 2004 7

Checking library contents

ar -t libWords1.a

s1.o

v1.o

ar -t libWords2.a

s2.o

v2.o

strings libWords1.a
…

Jane

codes.

…

strings libWords2.a
…

Ken

debugs.

...

September 27, 2004 © University of Colorado, 2004 8

Example, continued

Third, compile main

g++ -c main.c

Fourth, link executable

g++ main.o -o main1 -lWords1

g++ main.o -o main2 -lWords2

Fifth, run programs

main1 -> Jane codes.

main2 -> Ken debugs.

September 27, 2004 © University of Colorado, 2004 9

More info on ar command

ar is the ARchive command

It is similar to tar: Tape Archive

Both store multiple files as a single collection

ar focuses on storing .o files to create libraries

The similarity ends there

the command flags and behavior of these

commands are sometimes quite different

September 27, 2004 © University of Colorado, 2004 10

ar command syntax

ar (d|q|r|t) archive [files…]

r - Replace
replace .o files in archive with specified files

q - Quick append
append specified files to archive

d - Delete
delete specified files from archive

t - Table of Contents
print table of contents of archive

Note: This is just a sample of ar’s functionality; see
the ar man page for more details

September 27, 2004 © University of Colorado, 2004 11

Using Unix Libraries

In order to use a Unix library, a compiler needs to

know the location of the library, the location of its

include file, and its name

Unix compilers (g++, gcc, and cc) have command

flags that let you specify this information

-I Directory for include files (uppercase i)

-L Directory for Libraries

-l Name of library (lowercase L)

September 27, 2004 © University of Colorado, 2004 12

More on include directories

Any source file that wants to make use of a library,

must include its header file

The -I flag specifies a directory name for this

purpose

When a compiler encounters a “#include” statement,

it looks in the current directory and the directory
specified by the -I flag for the file

September 27, 2004 © University of Colorado, 2004 13

More on Library directories

The -L option specifies a directory where Unix

libraries are stored

When a linker needs to locate a library (in order to

link it into an executable), the linker will look in the
directory specified by the -L flag

Note: you can have more than one -L and -I flags in

a single command

September 27, 2004 © University of Colorado, 2004 14

More on Library names

The -l flag (lowercase L) specifies the name

of a Unix library

The compiler assumes that all libraries begin

with “lib” and end in “.a”

As such, you write “-lmath” rather than

“-llibmath.a”
The latter would cause the compiler to look for a
file called liblibmath.a.a!

September 27, 2004 © University of Colorado, 2004 15

Note: Order is significant

The order of -l flags is significant
g++ main.c -o main -lWords1 -lWords2

produces

“Jane codes.”

The object code in Words2 is ignored because the

linker found matches for subject() and verb() in

Words1

Swapping the libraries in the above command

produces
“Ken debugs.”

September 27, 2004 © University of Colorado, 2004 16

Brooks’ Corner:

Why Did The Tower of Babel Fail?

Communication, (the lack of it)

This made it impossible to coordinate

How do you communicate in large project teams?

Informally (telephone, e-mail), meetings, workbook

Workbook

It is a structure placed on a project’s documents

Why is it important? Technical prose lives a long time; best

to get it structured formally from the beginning; it also helps

with the distribution of information

September 27, 2004 © University of Colorado, 2004 17

More on the Workbook

OS/360

Each programmer should see all the material

Each book was updated quickly (one-day)

Problem

The workbook grew to 5 feet thick!

They switched to microfiche

We need to take advantage of on-line artifacts,

information management techniques like open

hypermedia, information retrieval, and the WWW

September 27, 2004 © University of Colorado, 2004 18

Reducing communication paths

Communication needs are reduced by

division of labor

specialization of function

A tree structure often results from applying this

principle

However this serves power structures better than

communication (since communication between siblings is

often needed)

So communication structure is often a network

September 27, 2004 © University of Colorado, 2004 19

Organizational Structure

Brooks outlines

mission, producer, director, schedule, division of labor, and

interfaces between the parts

The new items are the producer and the director

producer: manages project and obtains resources

director: manages technical details

Microsoft’s program and product manager

former is director, latter does more marketing than Brooks

specifies for producer but has some overlap

