
Lecture 9: Make Pattern Matching &

Conceptual Integrity

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

September 20, 2004 © University of Colorado, 2004 2

Pattern Matching, set-up

Below is a fairly standard makefile.
What would you do if you want to change your compiler to gcc
and add compiler flags such as -g?
program: main.o input.o output.o

g++ $^ -o $@
main.o: main.cpp defs.h

g++ -c $<
input.o: input.cpp defs.h

g++ -c $<
output.o: output.cpp defs.h

g++ -c $<

September 20, 2004 © University of Colorado, 2004 3

Pattern Matching, set-up, cont.

Use Macros of course!

CXX = g++

CFLAGS = -c -g
program: main.o input.o output.o

$(CXX) $^ -o $@

main.o: main.cpp defs.h
$(CXX) $(CFLAGS) $<

input.o: input.cpp defs.h
$(CXX) $(CFLAGS) $<

output.o: output.cpp defs.h
$(CXX) $(CFLAGS) $<

September 20, 2004 © University of Colorado, 2004 4

Pattern Matching, example

Did you notice how in all cases, our rules for
compiling each file were exactly the same, except for
the file name?

main.o: main.cpp defs.h
$(CXX) $(CFLAGS) $<

input.o: input.cpp defs.h
$(CXX) $(CFLAGS) $<

output.o: output.cpp defs.h
$(CXX) $(CFLAGS) $<

Make has a mechanism for capturing these
similarities, called pattern matching

This is make’s third abstraction mechanism

September 20, 2004 © University of Colorado, 2004 5

Pattern Matching

We can capture similarities between rules based on

file suffixes

Thus our rules in the previous examples that took

care of compiling files can be expressed as

%.o: %.cpp
$(CXX) $(CFLAGS) $<

This is not exactly the same, why? Does it matter?

September 20, 2004 © University of Colorado, 2004 6

Pattern Matching in Make

Make supports pattern matching through the
presence of the character “%” in rules

%.o: %.c
g++ -c $<

If you type “make input.o” the rule becomes

input.o: input.c
g++ -c $<

Note: automatic variables are required. Why?

September 20, 2004 © University of Colorado, 2004 7

Benefits of Pattern Matching

Scalability
The same rule can apply to thousands (or more) of files

Compactness
Small compact specifications are easier to understand and
debug

These are similar to the benefits of
wildcards and regular expressions

which should come as no surprise

September 20, 2004 © University of Colorado, 2004 8

More on Pattern Matching

Pattern matching in make is not exactly like

wildcards in the shell

Pattern matching rules do not try to match every

possible file name

Instead, they only execute if there is a

dependency that needs to be created that

matches the rule

Lets look at an example

September 20, 2004 © University of Colorado, 2004 9

Pattern Matching Example

program: program.o

g++ $^ -o $@

%.o: %.c

g++ -c $<

If you type “make program”, make will look for

“program.o”. This matches the “%.o” rule, so make

will execute “program.o: program.c”

You may have other .c files in the directory, but they

will not be made into .o files unless they are

specifically mentioned in the makefile

September 20, 2004 © University of Colorado, 2004 10

Pattern Matching Rules as Goals

As a result, make cannot run a pattern
matching rule, unless it is explicitly told to
do so (via the command line) or in response
to a dependency of another rule

Therefore, if the first rule in a makefile is a
pattern matching rule, make skips over it
and looks for the first non-pattern
matching rule

(But only when you type “make” at the command
line with no other command line arguments)

September 20, 2004 © University of Colorado, 2004 11

Pattern Matching Rules as Goals

%.o: %.c
g++ -c $<

program: program.o
g++ $^ -o $@

Typing “make” for the above makefile,

causes the program rule to be executed,

the pattern matching rule is ignored

(even though it comes first)

September 20, 2004 © University of Colorado, 2004 12

Pattern Matching Example, cont.

program: program.o
g++ $^ -o $@

%.o: %.c
g++ -c $<

Continuing our example, if you typed “make input.o”
with this makefile, the pattern matching rule would be
used to create “input.o” from an “input.c”

even though “input.o” is not explicitly mentioned in
the makefile

but only if “input.c” exists!

September 20, 2004 © University of Colorado, 2004 13

Suffix Rules

A variation on pattern matching rules are

suffix rules. The following two rules are

equivalent

%.o: %.c
g++ -c $<

.c.o:
g++ -c $<

Note the reversed order of the suffixes

September 20, 2004 © University of Colorado, 2004 14

Implicit Rules

Make’s abstraction mechanisms...

Pattern matching rules

automatic variables

macros

...make it possible to have a common set of

rules automatically defined by make

These rules are called “implicit rules”

Make’s implict rules are available in the “reference

materials” section of the class website

September 20, 2004 © University of Colorado, 2004 15

Implicit Rule Example

If you create a makefile that contains just the

following rule:

program: program.o
$(CC) $(CFLAGS) $^ -o $@

Make will act as if you had also included the

following rule

.c.o:
$(CC) $(CFLAGS) -c $<

September 20, 2004 © University of Colorado, 2004 16

Brooks’ Corner: Conceptual Integrity

Brooks example => Cathedrals

Many cathedrals consist of contrasting design ideas

The Reims Cathedral was the result of eight generations of

builders repressing their own ideas and desires to build a

cathedral that embodies the key design elements of the

original architect!

With respect to software

Design by too many people results in conceptual disunity of

a system which makes the program hard to understand and

use.

September 20, 2004 © University of Colorado, 2004 17

Conceptual Integrity

Brooks considers it the most important
consideration in system design

Better to leave functionality out of a system
rather than break the conceptual integrity
of the design

Questions

How is conceptual integrity achieved?

Does conceptual integrity give too much
power to system designers?

September 20, 2004 © University of Colorado, 2004 18

Function vs. Complexity

The key test to a system’s design is the

ratio of functionality to conceptual

complexity

Ease-of-use is enhanced only if a function

provides more power than it takes to learn

(and remember!) how to use the function

September 20, 2004 © University of Colorado, 2004 19

Function vs. Complexity, cont.

Neither function or simplicity alone is good enough

OS/360 had lots of functionality

PDP-10 had lots of simplicity

Both reached only half of the target!

You must be able to specify your intentions with simplicity and

straightforwardness; if your elements are too simple, then

complex tasks will not be straightforward to specify!

Brooks claims that adhering to the notion of

conceptual integrity can help you achieve the proper

balance of functionality and complexity

Ease of use requires unity of design, i.e. conceptual integrity

September 20, 2004 © University of Colorado, 2004 20

Architects as Aristocrats

Conceptual Integrity requires that the design be the

product of one mind

The architect (or surgeon) has ultimate authority (and

ultimate responsibility)!

Does this imply too much power for the architects?

In one sense, yes, but ease-of-use of a system comes from

conceptual integrity!

In another sense, no, the architect sets the structure of the

system, developers can then be creative in how the system is

implemented!

Indeed, some initial constraints can help focus the creativity since

the architect has taken care of the “key” design decisions.

