
Lecture 8: Make Automatic Variables

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

September 17, 2004 © University of Colorado, 2004 2

Today’s Lecture

Explore the topic of make’s automatic
variables in detail

Brooks’ Corner: The Surgical Team

September 17, 2004 © University of Colorado, 2004 3

Automatic Variables

Make has a special feature called automatic

variables

Automatic variables can only be used within
the actions of a make rule

The value of an automatic variable depends on
the target and dependencies of the rule in which it
occurs

September 17, 2004 © University of Colorado, 2004 4

Automatic Variables, cont.

$@ - The target of the
rule.

$< - The first
dependency.

$^ - All of the
dependencies.

$? - All of the
dependencies that are
newer than the target

$* - The stem of a
pattern matching rule.

e.g. If you are building
input.o from input.c the
stem is “input”

This only works with
pattern matching rules
(the topic of Lecture 8)

September 17, 2004 © University of Colorado, 2004 5

Automatic Variables, cont.

Below is a makefile that shows each rule with
two actions: the first is a standard action, the
second is the same action using automatic
variables

program: input.o output.o
g++ input.o output.o -o program

g++ $^ -o $@

input.o: input.c defs.h
g++ -c input.c -o input.o

g++ -c $< -o $@

output.o: output.c defs.h
g++ -c output.c -o output.o

g++ -c $< -o $@

September 17, 2004 © University of Colorado, 2004 6

Use of $?

The variable $? can be useful for
updating tar files

for example, where only those files
that have changed need to be
replaced.

lab5.tar: README makefile lab5.cpp
tar rf lab5.tar $?

September 17, 2004 © University of Colorado, 2004 7

The View Path

Make applies special meaning to another variable,
VPATH, also know as the view path.

While VPATH is not an automatic variable, it does interact
with them (as we shall see shortly)

VPATH consists of a list of directories, just like the
path variable of the shell

If make cannot find a dependency in the current directory, it
looks in the view path.

Note: just because a file is found in the view path does not
mean that the shell can find it when executing commands
(see next slide)

September 17, 2004 © University of Colorado, 2004 8

View Path Example

VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c

g++ -c lab05.c -o lab05.o

% make
g++ -c lab05.c -o lab05.o

g++: lab05.c: No such file or directory

Why does the action fail?

Assume we invoked the command in a build directory

September 17, 2004 © University of Colorado, 2004 9

View Path Example, cont.

To solve the problem, we can use automatic
variables

When a file is found in the view path, automatic variables are
set to contain the full path of the file

Therefore, our action line needs to make use of
automatic variables to reference files in an action

The full path of the file will be passed to the shell, which will
then be able to find the file

September 17, 2004 © University of Colorado, 2004 10

View Path Example, continued

VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c
g++ -c $< -o $@

% make
g++ -c /home/.../src/lab05/lab05.c -o lab05.o

Here, the action references lab05.c correctly. Note:
lab05.o is created in the current directory, even
though the source code is located elsewhere (which
is similar to how we compiled gnuchess in lab 1)

September 17, 2004 © University of Colorado, 2004 11

Accessing File Information

Using automatic variables, a file’s name and
directory can be extracted
VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c
echo found file $(<F)

echo in directory $(<D)

% make
found file lab05.c

in directory /home/.../src/lab05

September 17, 2004 © University of Colorado, 2004 12

Brooks’ Corner: The Surgical
Team (Chapter 3)

Or

How should a development team be arranged?

The problem

Good programmers are much better than poor
programmers

typically 10 times better in productivity

typically 5 times better in terms of program elegance

but we often do not have access to these “super
programmers”

September 17, 2004 © University of Colorado, 2004 13

The dilemma of team size

Consider the following example
200-person project with 25 managers

where the managers are also experienced software developers

Previous slide argues for firing the 175 workers and use the
25 managers as the development team!

However, this is still bigger than “the ideal” small team size of
10 people (general consensus)

However, the original team of 200 was too small to tackle
very large systems

OS/360 had over 1000 people working on it; consumed 5000
person-years of design, construction, and documentation!

September 17, 2004 © University of Colorado, 2004 14

Two needs to be reconciled

For efficiency and conceptual integrity

a small team is preferred

To tackle large systems

considerable resources are needed

One solution

Harlan Mill’s Surgical Team approach
One person performs the work

all others perform support tasks

This is only one approach, there are many!

September 17, 2004 © University of Colorado, 2004 15

The Proposed Team

The surgeon
The chief programmer

The co-pilot
Like the surgeon but less
experienced

The administrator
Relieves the surgeon of
administrative tasks

The editor
Proof-edits
documentation

Two secretaries
Support admin and editor

The program clerk
Probably obsolete today

The toolsmith
Supports the work of the
surgeon

The tester

The language lawyer

September 17, 2004 © University of Colorado, 2004 16

How is this different?

Normally, work is divided equally

Now, only surgeon and copilot divide the work

Normally, each person has equal say

Now, the surgeon is the absolute authority

Note communication paths are reduced

Normally 10 people => 45 paths

Surgical Team => at most 13 (See Fig. 3-1.)

September 17, 2004 © University of Colorado, 2004 17

How does this scale?

Reconsider the 200 person team

Communication paths => 19,900!

Create 20, ten-person surgical teams

Now, only 20 surgeons must work together

20 people => 190 paths
Two orders of magnitude less!

Key problem is ensuring conceptual integrity
of the design

September 17, 2004 © University of Colorado, 2004 18

The Modern Surgical Team

The surgical team, as conceived by Mills and
described by Brooks, is not widely used today

On Internet time, the chief programmer
approach is impractical

Now, it is more important that there be one to
three designers, or software architects, that
guide the design of the system

with many people implementing the system

This is true of the Microsoft approach
The program manager is responsible for the feature set

It is also true of many open source programs

