
Lecture 7: Make Macros

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2004

September 13, 2004 © University of Colorado, 2004 2

Today’s Lecture

Brief review of make

Explore make “macros” in more detail

Note: when you see “macro” think “variable”

Brooks’ Corner: The Mythical Man-Month

but first…a quick look at Ant (a build
management tool for Java programs)

September 13, 2004 © University of Colorado, 2004 3

Unix Build Management

In Unix environments, a common build
management tool is “make”

Make provides very powerful capabilities via three
types of specification styles

declarative

imperative

relational

These styles are combined into one specification:
“the make file”

September 13, 2004 © University of Colorado, 2004 4

Make Specification Language

Hybrid Declarative/Imperative/Relational

Dependencies are Relational
Make specifies dependencies between artifacts

Rules are Declarative
Make specifies rules for creating new artifacts

Actions are Imperative
Make specifies actions to carry out rules

September 13, 2004 © University of Colorado, 2004 5

Example “Makefile”

T1: T2 T3 T4
 A1 A2 A3

T2: T5 T6
 A4

T3: T5 T7
 A5 A6

Target

Actions

Dependencies

R
u
le

s

Tab Character
(required)

{
{

{

If a dependency changes, a rule’s actions
are executed to (re)create a rule’s target

September 13, 2004 © University of Colorado, 2004 6

Make “Macros” - think “Variables”

Make has variables known as “macros”
They are similar to shell variables with a few differences

Macros hold a string value

Macros are defined using an equal sign

INSTALLDIR = /home/faculty/kena/tmp/

And is used by preceding its name with a dollar sign

$(INSTALLDIR)/program : program

cp program $(INSTALLDIR)

The parentheses are required, otherwise make assumes that a
macro name is just one letter long

$INSTALLDIR is interpreted by make as $(I)NSTALLDIR

September 13, 2004 © University of Colorado, 2004 7

Macro Substitution

Make variables perform strict textual replacement so
the following two rules are equivalent

(Do not do this in practice!):

program: output.o
g++ output.o -o program

FOO = o

pr$(FOO)gram: $(FOO)utput.$(FOO)
g++ $(FOO)utput.$(FOO) -$(FOO) pr$(FOO)gram

September 13, 2004 © University of Colorado, 2004 8

Using a ‘$’ sign

Since the dollar sign has special meaning…
it indicates the use of a macro

…you need to “escape” it with a 2nd dollar
sign, if you want it passed to the shell as part
of an action

Note: make strips one of the dollar signs before
invoking a shell to process the action

Example: ‘chapter$’ is passed to egrep below
TableOfContents: book.txt

egrep chapter$$ book.txt > TableOfContents

September 13, 2004 © University of Colorado, 2004 9

Increased Abstraction

Macros increase the level of abstraction in a Makefile
program: main.o input.o output.o

g++ main.o input.o output.o -o program

is equivalent to
EXECUTABLE = program

OBJECTS = main.o input.o output.o

$(EXECUTABLE): $(OBJECTS)

g++ $(OBJECTS) -o $(EXECUTABLE)

They can also save keystrokes

September 13, 2004 © University of Colorado, 2004 10

Increased Abstraction, cont.

Why is this increase in abstraction important?

What benefit does abstraction typically provide?

Definition of Abstraction

Identify the important aspect of a phenomenon
and ignore the details

September 13, 2004 © University of Colorado, 2004 11

Increased Abstraction, cont.

Allows the user of an abstraction to be independent
of the hidden details

This allows the details to change without a user knowing
about it (or caring)

In makefiles, abstraction lets rules be defined that
can be applied to many different situations
$(EXECUTABLE): $(OBJECTS)

g++ $(OBJECTS) -o $(EXECUTABLE)

The above rule can be applied to almost any C++ or
C program

September 13, 2004 © University of Colorado, 2004 12

Definition and Use of Make Macros

A shell script is executed from top to bottom. As such,
a shell variable cannot be used before it is defined.

Makefiles, on the other hand, are not executed top to
bottom. Execution follows dependencies which can
be anywhere in the file

As such, there is no concept of one rule coming before or
after another rule

Therefore, all rules and macros are read entirely before the
make algorithm is executed

September 13, 2004 © University of Colorado, 2004 13

Definition and Use, continued

Shell Variables
%echo $var

%set var = hello

In response to the first
statement, the shell
complains “undefined
variable”

Make Macros
all:

echo $(VAR)

VAR = hello

Running make on the
above makefile
produces
echo hello

hello

September 13, 2004 © University of Colorado, 2004 14

Advanced Macro Use
BASEDIR = $(HOME)/csci3308

SRCDIR = $(BASEDIR)/src/function

ARCHDIR = $(BASEDIR)/arch/$(ARCH)

BUILDDIR = $(ARCHDIR)/build/function

BINDIR = $(ARCHDIR)/bin

MANDIR = $(ARCHDIR)/man

SOURCE = function.cpp

OBJECT = function.o

EXEC = function

$(BUILDDIR)/$(OBJECT): $(SRCDIR)/$(SOURCE)
g++ -c $(SRCDIR)/$(SOURCE) -o $(BUILDDIR)/$(OBJECT)

$(BINDIR)/$(EXEC): $(BUILDDIR)/$(OBJECT)
g++ $(BUILDDIR)/$(OBJECT) -o $(BINDIR)/$(EXEC)

September 13, 2004 © University of Colorado, 2004 15

Brooks’ Corner: The Mythical
Man-Month (Chapter 2)

Cost does indeed vary as the product of
the number of workers and the number
of months

Progress does not!

The unit of the man-month implies that
workers and months are interchangeable

However, this is only true when a task can be
partitioned among many workers with no
communication among them!

September 13, 2004 © University of Colorado, 2004 16

The Man-Month, continued

When a task is sequential, more effort
has no effect on the schedule

“The bearing of a child takes nine months,
no matter how many women are assigned!”

Many tasks in software engineering have
sequential constraints!

September 13, 2004 © University of Colorado, 2004 17

The Man-Month, continued

Most tasks require communication among
workers

communication consists of
training

sharing information (intercommunication)

Training affects effort at worst linearly

Intercommunication adds n(n-1)/2 to effort
if each worker must communicate with every other
worker

September 13, 2004 © University of Colorado, 2004 18

Intercommunication Effort

2 workers

3

4

5

6

7

1 path

3 paths

6 paths

10 paths

15 paths

21 paths

September 13, 2004 © University of Colorado, 2004 19

Comparison Graphs

Months

Workers

no communication with communication

“Adding more people then lengthens, not shortens, the schedule!”
 -- (A paraphrase of) Brooks’ Law

September 13, 2004 © University of Colorado, 2004 20

Scheduling

Brook’s rule of
thumb

1/3 planning

1/6 coding

1/4 component test

1/4 system test

More time devoted
to planning, half to
testing!

In looking at other
projects, Brooks found
that few planned for 50%
testing, but most spent
50% of their time
testing!

Many of these projects
were on schedule until
testing began!

