* Lecture 7: Make Macros

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2004

i Today’s Lecture

Brief review of make

Explore make “macros” in more detail
= Note: when you see “macro” think “variable”

Brooks’ Corner: The Mythical Man-Month

but first...a quick look at Ant (a build
management tool for Java programs)

September 13, 2004 © University of Colorado, 2004 2

i Unix Build Management

= In Unix environments, a common build
management tool is “make”
= Make provides very powerful capabilities via three
types of specification styles
= declarative
= imperative
= relational
= These styles are combined into one specification:
“the make file”

September 13, 2004 © University of Colorado, 2004 3

i Make Specification Language

= Hybrid Declarative/Imperative/Relational
= Dependencies are Relational
=« Make specifies dependencies between artifacts
= Rules are Declarative
= Make specifies rules for creating new artifacts

= Actions are Imperative
=« Make specifies actions to carry out rules

September 13, 2004 © University of Colorado, 2004 4

Example “Makefilez— "9
- Dependencies

T1:T2T3 T4
Al A2 A3

T2: T5T6
Ad Actions

——

T3 1517 Tab Character

~~AS AB (required)

Rules

If a dependency changes, a rule’s actions
are executed to (re)create a rule’s target

September 13, 2004 © University of Colorado, 2004 5

Make “Macros” - think “Variables”

= Make has variables known as “macros”
= They are similar to shell variables with a few differences

= Macros hold a string value
= Macros are defined using an equal sign
INSTALLDIR = /home/faculty/kena/tmp/
= And is used by preceding its name with a dollar sign
$ (INSTALLDIR)/program : program
cp program $(INSTALLDIR)
= The parentheses are required, otherwise make assumes that a
macro name is just one letter long
$INSTALLDIR is interpreted by make as $(I)NSTALLDIR

September 13, 2004 © University of Colorado, 2004 6

Macro Substitution

= Make variables perform strict textual replacement so
the following two rules are equivalent

= (Do not do this in practice!):

program: output.o
g++ output.o -o program

FOO = o
pr$(FOO)gram: $(FOO)utput.$(FOO)
g++ $(FOO)utput.$(FOO) -$(FOO) pr$(FOO)gram

September 13, 2004 © University of Colorado, 2004 7

Using a ‘$’ sign

= Since the dollar sign has special meaning...
= it indicates the use of a macro

= ...you need to “escape” it with a 2nd dollar
sign, if you want it passed to the shell as part
of an action

= Note: make strips one of the dollar signs before
invoking a shell to process the action

= Example: ‘chapter$’ is passed to egrep below

TableOfContents: book.txt
egrep chapter$$ book.txt > TableOfContents

September 13, 2004 © University of Colorado, 2004 8

i Increased Abstraction

= Macros increase the level of abstraction in a Makefile
program: main.o input.o output.o

g++ main.o input.o output.o -o program
= is equivalent to
EXECUTABLE = program
OBJECTS = main.o input.o output.o
$ (EXECUTABLE): $(OBJECTS)
g++ $(OBJECTS) -o $(EXECUTABLE)

= They can also save keystrokes

September 13, 2004 © University of Colorado, 2004 9

i Increased Abstraction, cont.

= Why is this increase in abstraction important?
= What benefit does abstraction typically provide?
= Definition of Abstraction

= ldentify the important aspect of a phenomenon
and ignore the details

September 13, 2004 © University of Colorado, 2004 10

i Increased Abstraction, cont.

= Allows the user of an abstraction to be independent
of the hidden details

= This allows the details to change without a user knowing
about it (or caring)
= In makefiles, abstraction lets rules be defined that
can be applied to many different situations
$ (EXECUTABLE): $(OBJECTS)
g++ $(OBJECTS) -o $(EXECUTABLE)
= The above rule can be applied to almost any C++ or
C program

September 13, 2004 © University of Colorado, 2004 11

Definition and Use of Make Macros

= A shell script is executed from top to bottom. As such,
a shell variable cannot be used before it is defined.

= Makefiles, on the other hand, are not executed top to
bottom. Execution follows dependencies which can
be anywhere in the file

= As such, there is no concept of one rule coming before or
after another rule

= Therefore, all rules and macros are read entirely before the
make algorithm is executed

September 13, 2004 © University of Colorado, 2004 12

i Definition and Use, continued

= Shell Variables = Make Macros
%echo $var all:
%set var = hello echo $(VAR)

= In response to the first VAR = hello
statement, the shell = Running make on the
complains “undefined above makefile

variable” produces
echo hello
hello
September 13, 2004 © University of Colorado, 2004 13

i Advanced Macro Use

BASEDIR = $(HOME)/csci3308

SRCDIR = $(BASEDIR)/src/function
ARCHDIR = $(BASEDIR)/arch/$(ARCH)
BUILDDIR = $(ARCHDIR)/build/function
BINDIR = $(ARCHDIR)/bin

MANDIR = $(ARCHDIR)/man

SOURCE = function.cpp

OBJECT = function.o

EXEC = function

$ (BUILDDIR)/$ (OBJECT): $(SRCDIR)/$(SOURCE)

g++ -c $(SRCDIR)/$(SOURCE) -o $(BUILDDIR)/$(OBJECT)
$ (BINDIR)/$(EXEC): $(BUILDDIR)/$(OBJECT)

g++ $(BUILDDIR)/$(OBJECT) -o $(BINDIR)/$(EXEC)

September 13, 2004 © University of Colorado, 2004 14

Brooks’ Corner: The Mythical
i Man-Month (Chapter 2)

= Cost does indeed vary as the product of
the number of workers and the number
of months
= Progress does not!
= The unit of the man-month implies that

workers and months are interchangeable

=« However, this is only true when a task can be
partitioned among many workers with no
communication among them!

September 13, 2004 © University of Colorado, 2004 15

i The Man-Month, continued

= When a task is sequential, more effort
has no effect on the schedule

= “The bearing of a child takes nine months,
no matter how many women are assigned!”

= Many tasks in software engineering have
sequential constraints!

September 13, 2004 © University of Colorado, 2004 16

:L The Man-Month, continued

= Most tasks require communication among
workers

= communication consists of
= training
= sharing information (intercommunication)

= Training affects effort at worst linearly

= Intercommunication adds n(n-1)/2 to effort

= if each worker must communicate with every other
worker

September 13, 2004 © University of Colorado, 2004 17

i Intercommunication Effort

= 2 workers = 1 path

= 3 = 3 paths
= 4 = 6 paths
= 5 = 10 paths
= 6 = 15 paths
7 = 21 paths

September 13, 2004 © University of Colorado, 2004 18

:L Comparison Graphs

“Adding more people then lengthens, not shortens, the schedule!”

-- (A paraphrase of) Brooks’ Law

"

Months

with communication

Workers
© University of Colorado, 2004 19

no communication

September 13, 2004

i Scheduling

= Brook’s rule of = In looking at other
thumb projects, Brooks found

that few planned for 50%
testing, but most spent

= 1/3 planning

= 1/6 coding 50% of their time
= 1/4 component test testing!
= 1/4 system test = Many of these projects
. were on schedule until
to planning, half to
testing!
September 13, 2004 © University of Colorado, 2004 20

