
Lab #6
Version Control and RCS

Due In Lab, October 6, 2004

Name:

Lab Time:

Grade: /10

Basic RCS Commands

1. Go into your ~/csci3308/tmp directory, and create a new directory called
lab06. cd into this new directory. You will be using this directory to play
with the basic RCS commands. We will be asking about changes that you
see in the state of files in the directory. The easiest thing to do is use ls
-l after each command to examine the contents of the directory.

2. Create a file named versioned containing the line $Header$. What are
the size and permissions on versioned?

3. Perform a check-in on the file with the command ci versioned. (You
can enter anything you like for the text of the description. Typically, the
description is used to document the purpose of the file. Type a period on a
line by itself to end the description.) What revision number was assigned
to it?

4. What file is now in the directory? What are its permissions and size?

5. This new file is the version control file. Its contents are different than the
original file versioned. The version control file is a plain ASCII text file.

1

You can look at its contents with a pager such as more, or a text editor
such as emacs. Look at the contents of the file now.

Because it is an ASCII text file you could also edit the version control file
with a text editor. In fact, the format of this file is specified in a man page.
Type man rcsfile. If man cannot find this manpage try the command:

man -M/tools/cs/rcs/man rcsfile

You do not have to read this man page all the way through, and I don’t
recommend that you edit version control files by hand. However, it is
interesting that once you understand the format, you can edit the file to
make changes—such as removing a lock—without going through the rcs
program. This has certain security implications for RCS files. In what
sort of environment do you think RCS was intended to be used?

6. Perform an unlocked check-out with the command co versioned

7. A working file has now been created. Where did it come from, and what
are its permissions?

8. Look at the contents of the working file. What did RCS do with the string
$Header$ that you put in the file?

9. Look again at the contents of the version control file. Does RCS perform
substitution on $Header$ when you check in the original file, or does it
do the substitution when you check out a working file?

10. Try to perform a check-in with the command ci versioned. What hap-
pened and why? (Hint: look in your directory.)

2

11. Why at a conceptual level does RCS behave this way?

12. Remove versioned. Why is it safe to do so?

13. Perform a locked check-out with the command co -l versioned. What
are the permissions on the working file.

14. Look inside the version control file. What line(s) tell RCS that a lock is
being held on the file?

15. Perform a check-in on the file. What happened and why? What file or
files are currently in the directory?

16. Check out the file with a lock again. Edit the working file to add some
text. Now perform a check-in on the file. What revision number was
assigned?

17. Now check out version 1.1 with a lock. You can do this with one of the
following commands

3

co -r1.1 -l versioned
co -l1.1 versioned

18. Now edit the working file and check it back in. What version number was
assigned?

19. Below, draw the version graph of the file at this time.

The RCS Directory

20. Create a directory named RCS in the current directory. Move the version
control file versioned,v into that directory. Stay in the current directory
and try checking versioned out and back in a few times.

21. Create a new file in the current directory named control. Check it in with
the command ci control. Where was the version control file created?

22. Type co RCS/*. What happened?

23. It is important to be able to recognize what component performs what
functions of a command. In this case the shell expands the pathname
RCS/* into RCS/control,v RCS/versioned,v and then executes

co RCS/control,v RCS/versioned,v

4

then the co command finds the version control files and performs the
checkout.

24. Delete both working files in the current directory. Type co control.
Even when you do not specify the RCS directory the RCS program knows
to look there.

25. Delete the working file again and type co *. Why doesn’t this work?
Shouldn’t co look in the RCS directory for the version control files?

Mediating Among Multiple Developers

In this part of the lab everyone will be editing the same file. This simulates
a situation where there are multiple software developers trying to edit the same
code. Depending on what others are doing you may or may not gain immediate
access to the shared file. If not, try again a short while later.

26. Go to your ~/csci3308/tmp directory and type

ln -s ~csci3308/RCS

This creates a symbolic link to an RCS directory that you will be sharing
with the other “software developers.”

NOTE: This RCS directory is currently ”world writeable” for the purposes
of this assignment. Even though you have the ability to place other files
in this directory, DO NOT DO SO! In addition, do not erase or delete the
CommentBook,v file.

27. Check out, with a lock, the file CommentBook. Write the command that
you used below.

28. What is the current version of the file?

5

29. Type rlog CommentBook. When was that version checked in?

30. Who was the user that checked it in?

31. Edit the file by adding a short comment.

32. Check the file back in. BE SURE TO RELEASE THE LOCK! Write the
command that you used below. Use the rlog command to verify that the
file is unlocked.

33. What version number was given to the file?

34. Examine the version history of the CommentBook with the rlog command.
Which user created version 1.1 and when?

6

