
Lab #0
Getting Started

Due In Your Lab, August 25, 2004

Name:

Lab Time:

Grade: /10

Man

UNIX systems contain on-line manuals called man pages that are accessed
through the program man. To find out how to use man type man man. Those of
you already familiar with man pages may still want to re-read the man man page
to learn about advanced features that you may not already know. Regardless,
you must know at least enough about man to answer the following questions.

1. What command would find the man page for exit in section 2 of the
manual?

2. What command would list all the man pages related to the key word
network?

Emacs

The text editor emacs has several features that we will use in this course
such as integrating with the compiler and debugger. Therefore, you must learn
and use emacs for this course. The more you use emacs early on the easier it
will be to use when you are required to use emacs for its extra features. You
can find a pointer to the emacs reference card in the reference materials section
of the class web site.

To find out how to use emacs run emacs, and type CTRL-h t, or in emacs
parlance C-h t. This will start the emacs tutorial. The complete emacs manual
can be found online at

1

http://www.gnu.org/software/emacs/manual/

Once again, those of you already familiar with emacs may want to look at the
tutorial for features that you don’t yet know. You must at least be able to
answer the following questions.

3. What are the commands to move forward and backward a word at a time?

4. How do you give a numeric argument to emacs commands?

5. How do you undo?

The Kernel and the Shell

It is important for you to understand how the UNIX operating system is
organized. When you are logged on, the computer is running something called
a kernel and something else called a shell. These are separate things, and we
will discuss them one at a time.

The kernel controls all access to hardware. Whenever a key is pressed,
the mouse is clicked, or something is printed to the screen the kernel must be
involved. However, the kernel is a very low level component. Users don’t interact
with it directly. It does not print your prompt, and it does not interpret the
commands you type. You can interact with the kernel when you write programs,
for example when you open and close files.

You can call the kernel directly with system calls, but normally you don’t do
this. Instead, you call a library procedure which calls the kernel for you. Look up
the man page for open in section 2 of the manual, and the man page for fopen in
section 3 of the manual. Both of these open files. Open is a system call directly
to the kernel, and fopen is a library procedure. Many programs use fopen
because it handles details automatically and presents a simpler interface. You
can think of calling the kernel directly as low level programming like assembly
language, and library procedures as high level programming like C++.

Strictly speaking, the UNIX operating system consists of just the kernel.
However, there is another program called the shell that is very important. The

2

shell is the program that prints your prompt, and starts up programs when you
type their names. The shell is a normal program like Netscape or Emacs. It has
to use the kernel to accomplish what it does. For example, here’s what happens
when you type ls *.cxx to print all .cxx files:

a. Each time you type a key, the kernel receives a hardware interrupt stating
that a key has been pressed. It places that character in an input buffer
for the shell. The kernel has no idea that the two characters ls are the
name of a program that you want to run.

b. The shell reads its input buffer until it gets to the end of the line. (You
read from the input buffer in your C++ programs when you use the cin
command.) The shell interprets the line as words separated by spaces.
The shell assumes that the first word, ls, is a program that you want to
run. The shell has to ask the kernel if a program named ls exists, and if
so, to please start it up.

c. The shell also interprets *.cxx. The shell asks the kernel for the names
of all the files in the current directory. The shell knows that * matches
anything, so it checks each one to see if it ends with .cxx. If so, it passes
the file name on to ls.

d. The ls program receives a list of file names. ls has no idea that you ever
typed *. It prints out each of the files and exits.

e. The shell prints another prompt, and waits for the user.

It is important to know what parts of the computer do what in case some-
thing goes wrong. At some point, you may think you have a bug in your program
when in fact the problem is that the shell can’t find your program, or there is a
problem with interpreting your arguments.

One final point is that you can run many shells, but there is only one kernel.
If you have two windows open, and each window has a prompt, then you have
two shells running, but they are both talking to the same kernel. Several people
can be remotely logged on to a single computer. Each of them could have several
shells, but they would all access the same kernel.

There are also several types of shell. To find out what shell you are using
type echo $shell.

6. What shell are you using?

3

Shell Variables and Environment Variables

To make your life easier, the shell has the ability to store variables. Each
variable holds a value just like variables in an ordinary programming language.
Unlike most programming languages all variables are of type string. It is legal
to say set x=25, but this sets the value of variable x to be the string "25", not
the integer 25. To read the value of a variable precede its name with a dollar
sign. For example, $x. When the shell sees a dollar sign, it looks this word up
to see if it is the name of a variable. If the word is a variable name, the shell
replaces the word, including the dollar sign, with the value of the variable. If
the word is not a variable name, the shell prints an error message. Type the
following:

set word = quiet
echo word
echo $word

Echo is a command that prints out whatever it reads in. When you typed
echo word the echo command read word and printed word. When you typed
echo $word the shell saw $word and replaced it with quiet. Then the echo
command read quiet and printed quiet. The effect was exactly as if you had
typed echo quiet. Now type:

echo $wordly
echo "$word"ly

In the first command the shell couldn’t find the variable wordly. The prob-
lem was that the shell tries to get the biggest word it can, stopping only for
spaces or other special characters, so it didn’t try to match $word. Quotes are
one of the special characters that the shell recognizes so the second command
tells the shell to look up $word, and then add ly to the end producing quietly.

Variables can also be set to lists of strings. A list is actually a single string
where a special character separates list items. The shell stores this value as a
normal string, but certain programs treat it like a list of items.

There are two types of variables, shell variables, and environment variables.
There are only two major differences that you need to be aware of between
these types of variables. The first difference is that environment variables are
copied to any new child processes created from the current one while shell vari-
ables are not. For this reason environment variables are often used like global
variables and shell variables are used like local variables. To distinguish them,
environment variables are typically given names in all capital letters, while shell
variables are given lower case names.

The other difference between shell variables and environment variables is
syntax. A shell variable is defined with the set command. There is an equal
sign between the variable and its value. If a value is a list the items are separated
by spaces and enclosed in parentheses. For example,

set shopping list = (apples oranges bananas)

4

An environment variable is set with the setenv command. There is no equal
sign. If a value is a list the items are separated by colons and enclosed in quotes.
For example,

setenv SHOPPING LIST "apples:oranges:bananas"

Finally, if a lab refers to a “variable”, it typically is talking about a shell variable.
If a lab refers to an environment variable it will say “environment variable.”

To see a list of the local variables for the current shell, type set. To see a
list of the environment variables for the current shell, type printenv.

Type the following statements.

set a = the
set b = blue
setenv C car
set b = ($C $b)
setenv PHRASE "$a : $b : $C"
echo $b
echo $PHRASE

7. List all of the variables given above, and say whether each is a shell variable
or environment variable.

8. What are the values of $b and $PHRASE after executing the above state-
ments?

In the same window type xterm. This will open a new window which will be
a child process of the window in which you typed xterm. In the child window
type the following.

echo $b
echo $PHRASE

9. What happened and why?

5

Directory Paths

In UNIX the location of a file or directory is given like this

/usr/local/X11/doc/FAQ.X

This is essentially a list of directory names separated by slashes, and the last
name is the name of the file. You can think of the file system as a tree. Each
directory is a node in the tree. It has pointers to its parent, and all of its children,
but does not know anything about other nodes in the tree. To find this file,
FAQ.X, the kernel cannot just go directly to its immediate parent directory, doc,
because it does not know the location of that directory on the hard disk. The
kernel only knows the location of one directory, /, also called the root directory.

To find /usr/local/X11/doc/FAQ.X the kernel goes to /, and looks up the
location of usr. Then it goes to usr and looks up the location of local, and so
on. This hopping from one directory to another has been described as following
a path of directories. For this reason, /usr/local/X11/doc/ is said to be the
directory path to the directory doc that contains the file FAQ.X.

This leads us to a very confusing naming convention in UNIX. There is
an important variable named path. This variable actually contains a list of
directory paths. I have probably spent an inordinate amount of space describing
this, but in past semesters in this class there was sometimes confusion when
someone used the word path. This usually occurred when talking about a
directory path listed in the path variable. I just want everyone to be aware of
this potential confusion.

When I said that the kernel only knows the location of the root directory
that was not entirely accurate. It also stores a few other convenient directories
where you can start directory paths. The first of these is the current working
directory. When a directory path does not start with a slash it is assumed to
start in the current directory. Directory paths that start in the current directory
are called relative paths because the location referred to is relative to where you
are at the time, and can change if you change directories. In contrast, directory
paths that start at the root directory are called absolute paths because the
location referred to does not change if you change directories.

There is a third starting point for directory paths called your home directory.
The character ~ represents the current user’s home directory. To specify a
different user’s home directory type ~username . You can also specify your
home directory with the environment variable HOME. Type echo $HOME to see
what its value is. Using ~ does not work in every situation. If you run into
problems try using $HOME instead.

The Path Variable

When you type a command you are actually typing the filename of an ex-
ecutable file. To run that command the shell must be able to find the file.
The way to tell the shell where to look for executable files is through the path
variable. Type the following:

echo $path

6

You should see a list of directories. Most of them probably end with bin. Bin
stands for binary and is a common name for directories used to hold executable
files. Now type:

set path = ()
echo $path
ls

Oh, no! UNIX is broken, you can’t even list the files in your directory!
Actually, UNIX isn’t broken, you just have to understand how it works. There is
nothing special about ls, it’s just a program. It has an executable file somewhere
in the file system. When you want to list the files in your directory you type
ls. The shell sees this, and looks for an executable file named ls. Where does
it look? It looks in the directories listed in your path variable. When you
executed set path = () you set your path to an empty list. The ls program
is still there, but your shell doesn’t know where to find it. Luckily there is a
way to get your path back. Type:

source ~/.cshrc
ls

You should recognize ~/.cshrc as a directory path that starts in your home
directory. When you see this you should think, “There is a file named .cshrc
in my home directory.” This file is called a startup file, and it is where the shell
gets your path every time you log on. Essentially, you just re-ran your startup
file to reset all of your variables including your path.

Changing Your Path

Lets say you have a new program that you want to run, but it is in a directory
that is not in your path. You can change your path to add this directory. Type
the following:

hello
set path = (~csci3308/arch/$ARCH/bin)
hello

The executable file hello is in the directory ~csci3308/arch/$ARCH/bin.
The shell couldn’t find it until you put the directory in your path. Of course
now you have deleted all the other directories from your path. If you type
ls it won’t work. Type source ~/.cshrc again to get your path back. Now
type hello. It doesn’t work because you re-initialized your path which doesn’t
contain ~csci3308/arch/$ARCH/bin. What you really need is some way to add
a directory to your path without destroying the rest of your path. Type the
following:

set path = ($path ~csci3308/arch/$ARCH/bin)
hello
ls

7

Problem solved! Saying set path = ($path ~csci3308/arch/$ARCH/bin)
is much like saying x = x+1. It keeps what is in the path, and adds another
directory.

There is another problem which you haven’t encountered yet. From that
same window type xterm to get another window. Now try to run hello from
this new window. It shouldn’t be able to find it in your path.

10. Why can’t the shell find the hello command in this new window?

This is where the .cshrc file comes in. Remember, you can re-set your path
by re-running .cshrc. Every time you log in or create a new window your path
gets set from this file. If you want to make permanent changes to your path you
can change how it gets set in this file. Run emacs ~/.cshrc. this file is just
an ordinary text file, and you can edit it with emacs. Find where it defines the
path variable. If you have the default .cshrc given to new accounts it should
be on or near line 31.

Notice that path is set here with the set command exactly how you set it on
the command line. Add ~csci3308/arch/$ARCH/bin to this list, and save the
file. Now type source ~/.cshrc to reload your path from this file. The shell
also uses a shortcut hash table to speed up processing your path. If your path
ever seems like it isn’t working correctly try typing rehash to refresh this table.
Now try running ls and hello to make sure your path is correct.

Which and Where

The next thing to understand is how the shell searches your path. The shell
starts with the first directory in your path. If that directory contains a file with
the correct name, it tries to run it. If not, it goes on to the next directory
in your path, and so on. There is a different version of hello in the directory
~csci3308/bin. Add this directory to your path. Now type the following:

~csci3308/bin/hello
~csci3308/arch/$ARCH/bin/hello
hello

First, you typed out the entire path to the files and the shell should have run
the copy of hello that you specified. When you just typed hello the shell should
have run the copy in whichever directory comes first in your path. There are
two useful commands for looking for programs in your path, which and where.
Type the following:

which hello
where hello

8

which prints out which program will be run if you just typed its name with
no directory path. where lists all copies of a program with that name in your
path. If there are multiple copies of a program with the same name, and you
care which one gets run, you may have to use which or where and the program’s
full directory path.

Your Directory Structure

It is a good idea to have an extensive directory hierarchy under your home
directory to organize your files. There are no absolute rules about the best way
to organize a directory hierarchy. Usually, you design your own hierarchy, and
the most important thing is how useful it is to you. However, sometimes there
are other considerations. For example, if you are working for a company, your
manager might want everyone’s directory hierarchy to be set up the same so
that things are easy to find even under another person’s home directory. In
this class we will be simulating this situation where your directory hierarchy is
specified for you by a manager.

In your home directory create a directory named csci3308. This directory
~/csci3308 will be called your class home directory. All files we create in this
class will be placed under this directory, and this directory should only be used
for this class. The reason for this is so that our files will not interfere with your
own personal files, or with files from other classes. Also, for many of the labs
we have set up shell scripts and make files to work under this directory.

There is an important difference between ~csci3308 and ~/csci3308. There
is a computer account for the class called csci3308. This is essentially a separate
user named csci3308. This user’s home directory is ~csci3308. Many of the files
you will use for this class will come from this account. However, you also have
a directory named csci3308 under your home directory. The directory path to
this is ~/csci3308. This means ~, your home directory, /, a subdirectory of
your home directory, and csci3308, the subdirectory is named csci3308. This
is different than ~csci3308 which is the home directory of a different user who
happens to be named csci3308. You should understand this difference and keep
these two directories straight in your head.

Create subdirectories of your class home directory as shown in Figure 1. The
purpose of each directory is explained below.

Note: Some printers cannot print the figures below correctly. If the figures
below look weird on your printout, then view the figures on-line using the Adobe
Acrobat Reader.

arch There are computers of several different architectures in the education
lab. To find out the architecture of the machine you are on type one of
the following commands:

/usr/local/bin/arch
echo $ARCH

You should be able to recognize $ARCH as being the value of the environ-
ment variable ARCH. You can tell that it is an environment variable because

9

csci3308��������9
arch

�
�	

bin

@
@R

doc

XXXXXXXXz
lib

��
���

����
man

?
man1

�
�
�
��

misc

C
C
C
CW

src

HH
HHH

HHHj
tmp

Figure 1: Directory Structure

it is capitalized.

Certain files such as binary executable files will only work for a particular
architecture. These are referred to as architecture specific files. The arch
directory is where you will keep any architecture specific files. Create a
subdirectory of your arch directory for each architecture in the lab as
shown in Figure 2.

arch
������)

x86
?

i86pc

PPPPPPq
sun4

Figure 2: Architecture Specific Directories

Each architecture directory also needs certain subdirectories. Under the
x86 directory make subdirectories as shown in Figure 3.

x86��������9
bin

�
�	

build

@
@R
include

XXXXXXXXz
lib

�
�
�
��

man

C
C
C
CW

tmp

Figure 3: x86 Subdirectories

x86 is the architecture that we will use most often, and it is the only one
whose directories we will set up today. Eventually, all three architectures
should have the same set of subdirectories. Creating each architecture’s
subdirectories by hand would be tedious. Soon you will be writing a shell
script to set up the architecture specific subdirectories automatically.

arch/x86/bin A bin directory is where you store executable files. Because
this bin directory is under the arch/x86 directory it stores architecture
specific executable files for the x86 architecture. These files are also called

10

binaries, hence the name bin. These kind of files are the normal programs
that everyone knows and loves.

Unfortunately, binary files only work for one architecture. Imagine that
you had written a very useful program in C++, and you compiled it on a
x86 machine. The program would work great and do its useful thing on a
x86 machine, but if you tried to run it on an sun4 machine you would prob-
ably get a message like “Exec format error. Wrong Architecture.”
To solve this problem you need to compile the program on a sun4 ma-
chine, but this will create a new executable file with the same name as
the old one. If you create it in the same directory it will overwrite the
old program, and you will no longer be able to use the program on a x86
machine without recompiling again.

Rather than recompile the program every time you switch architectures
you should have multiple copies of the same program that work on different
architectures. These copies have to be placed in different directories. That
is the purpose of the x86/bin, sun4/bin, etc. directories.

You want the program to be in your path, but which copy? You have mul-
tiple copies of the program in different directories. Which directory should
be in your path? The string .../arch/$ARCH/bin solves this problem.
The variable ARCH automatically selects the bin directory that contains
programs that will work on your current architecture. Add the directory
~/csci3308/arch/$ARCH/bin to the path in your .cshrc file. Also, copy
to this directory the hello program from ~csci3308/arch/$ARCH/bin and
use the where command to make sure your path is correct. Remember to
source your .cshrc file, and type rehash.

arch/x86/build When you compile programs they often create many interme-
diate files that are only used in the compilation process. For example, to
compile a C++ program the compiler first creates a .o (object) file for
each .cpp source file. Then these .o files are combined to create the exe-
cutable file. Once the executable file is created the .o files are unnecessary
to running the program and can be deleted. If the program is undergoing
changes then keeping .o files around can speed up compiling the program
because only those .cpp files that change need to generate new .o files.
Usually, .o files are kept around while a program is being changed, but
are deleted when the final version is compiled.

A naive approach to keeping intermediate files around would be to com-
pile the program in the bin directory where the executable should go.
Unfortunately, this creates some problems.

a. Intermediate files clutter the bin directory and make executable pro-
grams harder to find.

b. When you want to delete intermediate files it is harder to clean up
all of the unnecessary files without deleting files you want.

11

c. If two programs both create an intermediate file with the same name
they will overwrite each other.

To solve the first two problems, programs are compiled (built) in the
build directory, and to solve the third problem each program is given its
own subdirectory under the build directory. The program is built in that
directory, and all of the intermediate files are created there. When the final
version of the program is completed the executable is copied (installed) to
the bin directory, and the entire build directory for that program can be
deleted without worrying about deleting anything you need.

arch/x86/include and

arch/x86/lib These directories hold libraries of functions that can be used and
reused by different programs without rewriting, or even recompiling, the
library. This topic will be discussed in more detail later in the semester.

arch/x86/man This directory holds man pages that are architecture specific.
Believe it or not, some programs work differently on different architectures,
and so need different man pages.

arch/x86/tmp This directory holds any architecture specific temporary files.

bin This directory holds files that are executable, but are architecture inde-
pendent. An example of this is a shell script which is not compiled, and
can be run on any architecture. Place this directory $HOME/csci3308/bin
in your path. Also, copy the hello program from ~csci3308/bin to this
directory and use the where command to make sure your path is correct.

doc This directory holds documentation other than man pages. The man pro-
gram searches man directories automatically, and expects man directories
to be set up in a certain way. Therefore, it is usually best to keep non-man
page documentation out of the man directory.

lib This directory holds reusable components that behave like libraries, but
are not architecture specific. An example would be a high score file for a
game. You want the program to use the same high score file no matter
what architecture you are on.

man This directory holds man pages. Most man pages are stored in directories
where you do not have write access. Thus, you have a problem if you
download a new program and you want to store and access its man pages.
The solution is to store its man pages in your own man directory. Under
the man directory create a directory called man1. In this directory create
a text file named simple.1 containing the text “This is my man page.”
or something to that effect. Now type:

man simple
man -M$HOME/csci3308/man simple

12

The man program can only find your simple man page if you tell it where to
look. You don’t want to do this every time, so there is an environment vari-
able called MANPATH that works for man pages like path works for pro-
grams. MANPATH is set in your .cshrc file like your path. Edit your .cshrc
file to add $HOME/csci3308/man and $HOME/csci3308/arch/$ARCH/man
to your MANPATH. Re-source your .cshrc file and make sure man can see
your simple man page.

misc Some files don’t fit in any classification under our directory structure.
Place these files in the misc directory.

src This directory holds source code for any programs you build. You want
to keep source code, intermediate files, and executable programs separate
for all of the reasons listed in the description of the build directory above.
Like the build directory, the source directory will have a subdirectory for
each program in case two programs have files with the same name.

tmp This directory holds temporary files. You should feel free to remove all of
the files in your tmp directory at any time. Consequently, you shouldn’t
put anything in your tmp directory that you don’t want deleted. Use the
misc directory for this instead.

Your First Shell Script

A shell script is an ordinary text file containing a list of shell commands.
Every time the script is run it runs all the commands listed in the file one after
another. Use Emacs to create a new file containing the following text:

#!/bin/tcsh
echo The current date and time is:
date

11. This shell script is an architecture-independent executable file. In what
directory should it be placed?

Now you need to give permission to run your script. Type the following:

chmod u+x filename

where filename is replaced by the name of your script. If your shell script
is in the right directory it should be in your path and you can access it from
anywhere. Use which and where and the name of your shell script to make sure
it is in your path, and then type the name of your shell script to run it.

Note: make sure that the path to tcsh is specified correctly. Type where
tcsh to make sure you are using the correct path.

13

