Designing Strassen’s Algorithm
For Matrix Multiplication

Joint w/ Cris Moore
arXiv:1708.09398, 1612.01527

LA Combinatorics & Complexity Seminar
November, 2020

Joshua A. Grochow
Multiplying matrices

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
b_{11} \\
b_{21} \\
\vdots \\
b_{n1}
\end{pmatrix}
\begin{pmatrix}
b_{12} & \cdots & b_{1n} \\
b_{22} & \cdots & b_{2n} \\
\vdots & \ddots & \vdots \\
b_{n2} & \cdots & b_{nn}
\end{pmatrix}
=
\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}
\]

\(n \) multiplications and \(n - 1 \) additions per dot product

\(n^2 \) dot products

\(\Rightarrow O(n^3) \) steps
Multiplying matrices

$$\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix} \begin{pmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{pmatrix} = \begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix}$$

n multiplications and $n − 1$ additions per dot product

n^2 dot products

$\Rightarrow O(n^3)$ steps

Theorem [Klyuyev & Kokovkin-Scherbak ‘65]: Optimal if only allowed to work on rows and columns as a whole.

Theorem [Strassen ‘69]: Can do better! $O(n^{\log_2 7}) = O(n^{2.81})$.
Multiplying matrices

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{pmatrix} =
\begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix}
\]

Used in scientific computing*, graphics, GPUs, combinatorial algorithms, other algebraic algorithms, deep learning
Matrix multiplication can even be the bottleneck
In practice

• Often have sparse or structured matrices → better algorithms available

• Even with dense, unstructured matrices, memory and communication are more frequently the bottleneck than number of operations
In practice

- Often have sparse or structured matrices → better algorithms available
- Even with dense, unstructured matrices, memory and communication are more frequently the bottleneck than number of operations
- Strassen’s algorithm actually used in practice
- Other algorithms today aren’t, but future ones could be!
Multiplying matrices

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{pmatrix}
=
\begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix}
\]

Used in scientific computing*, graphics, GPUs, combinatorial algorithms, other algebraic algorithms, deep learning

Matrix multiplication can even be the bottleneck

More importantly: gives us insight into the nature of computing & complexity!
Multiplying matrices

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & b_{12} & \cdots & b_{1n} \\
 b_{21} & b_{22} & \cdots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}
\begin{pmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{21} & c_{22} & \cdots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}
\]

Theorem [Strassen ‘69]: Can do better! \(O(n^{\log_2 7}) = O(n^{2.81}) \).

Definition: The exponent of matrix multiplication is
\[
\omega = \inf\{e : MM_n in O(n^{e+\varepsilon}) \forall \varepsilon > 0\}
\]

Conjecture (folklore): \(\omega = 2 \).

In principle, \(\omega \) depends on the characteristic.
Improvements (in theory)

Current record [Alman-Williams ‘20]: $\omega < 2.372859$
Strassen’s Algorithm I:
A magical 2x2 trick

Ordinary 2x2 product: 8 products, 4 sums

\[
I = (a_{11} + a_{22})(b_{11} + b_{22}) \quad II = (a_{21} + a_{22})(b_{11})
\]

\[
III = (a_{11})(b_{12} - b_{22}) \quad IV = (a_{22})(-b_{11} + b_{21})
\]

\[
VI = (-a_{11} + a_{21})(b_{11} + b_{12}) \quad V = (a_{11} + a_{12})(b_{22})
\]

\[
VII = (a_{12} - a_{22})(b_{21} + b_{22})
\]

\[
c_{11} = I + IV - V + VII \quad c_{12} = III + V
\]

\[
c_{21} = II + IV \quad c_{22} = I + III - II + VI
\]

Strassen 2x2 product: 7 products, 18 sums
Strassen’s Algorithm II: Recurse

Works correctly even if entries are from a noncommutative ring
Suppose the entries are from $M_n(\mathbb{C})$
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & a_{12} \\
b_{21} & a_{22}
\end{pmatrix}
= \begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\]
Strassen’s Algorithm II:
Recurse

Works correctly even if entries are from a noncommutative ring
Suppose the entries are from $M_n(\mathbb{C})$

\[
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & a_{12} \\
 b_{21} & a_{22}
\end{pmatrix} =
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\
 \beta_{21} & \beta_{22} & \cdots & \beta_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \beta_{n1} & \beta_{n2} & \cdots & \beta_{nn}
\end{pmatrix}
\begin{pmatrix}
 \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\
 \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \gamma_{n1} & \gamma_{n2} & \cdots & \gamma_{nn}
\end{pmatrix}
\]

$M_2(M_n(\mathbb{C})) \cong M_{2n}(\mathbb{C})$
Strassen’s Algorithm II: Recurse

Works correctly even if entries are from a noncommutative ring

Suppose the entries are from $M_n(\mathbb{C})$

$$
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & a_{12} \\
b_{21} & a_{22}
\end{pmatrix} =
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
$$

$M_2(M_n(\mathbb{C})) \cong M_{2n}(\mathbb{C})$

Multiply $2n \times 2n$ matrices using $7 n \times n$ products, and $18 n \times n$ additions

Let $R(n) = \#$ products (“rank”), $A(n) = \#$ additions to mult two $n \times n$ matrices

$$
R(2n) \leq 7R(n) \quad R(n) \leq n^{\log_2 7}
$$

$$
A(2n) \leq 18n^2 + 7A(n) \quad A(n) \leq 6(7n^{\log_2 7} - 4n^2) = \Theta(n^{\log_2 7})
$$
How did Strassen find this?

Trying to prove it couldn’t be done mod 2, by hand, (clever) brute force.

Found solution mod 2.

Figured out signs to work over \mathbb{Z}.
Mystery: Math behind the magic?

Where does the magical 2×2 trick “really” come from?
Matrix multiplication is characterized by its symmetries (important in Geometric Complexity Theory approach to P versus NP).

Let $\mu: M_n \otimes M_n \to M_n$ be matrix multiplication. Then:

$$\mu(A, B) = X^{-1}\mu(XAY^{-1}, YBZ^{-1})Z$$

for all $X, Y, Z \in GL_n$.

Any bilinear map $f: M_n \otimes M_n \to M_n$ such that

$$f(A, B) = X^{-1}f(XAY^{-1}, YBZ^{-1})Z$$

for all $X, Y, Z \in GL_n$ is a scalar multiple of μ.

Our starting point: For V an irrep of G, write $M_n = V \otimes V^*$, then invariance under G^3 (rather than GL_n^3) suffices!
Proof

First rephrase matrix multiplication more symmetrically.

It is a bilinear map $M_n \otimes M_n \rightarrow M_n$, so we can treat it as an element of $M_n \otimes M_n \otimes M_n^*$, namely

$$T_{MM} = \sum_{ijk} E_{ij} \otimes E_{jk} \otimes E_{ki}$$

$$\langle T_{MM} | A \otimes B \otimes C \rangle = tr(ABC)$$

Note $(AB)_{ik} = tr(ABE_{ki})$
Rephrasing Matrix Multiplication Symmetrically

\[\sum_{ijk} E_{ij} \otimes E_{jk} \otimes E_{ki} \]

If we write \(M_n \cong U \otimes V^* \), then this lives in

\[M_n \otimes M_n \otimes M_n^* \]

\[\cong (U \otimes V^*) \otimes (V \otimes W^*) \otimes (W \otimes U^*) \]

\[\cong U \otimes (V \otimes V^*) \otimes (W^* \otimes W) \otimes U^* \]

In this decomposition, MM is

\[\text{Id}_U \otimes \text{Id}_V \otimes \text{Id}_W \]
Rephrasing Matrix Multiplication
Symmetrically

\[
\sum_{i,j,k} E_{ij} \otimes E_{jk} \otimes E_{ki}
\]

If we write \(M_n \cong U \otimes V^* \), then this lives in

\[
M_n \otimes M_n \otimes M_n^*
\]

\[
\cong (U \otimes V^*) \otimes (V \otimes W^*) \otimes (W \otimes U^*)
\]

\[
\cong U \otimes (V^* \otimes V) \otimes (W^* \otimes W) \otimes U^*
\]

In this decomposition, MM is

\[
Id_U \otimes Id_V \otimes Id_W
\]
Rephrasing Matrix Multiplication
Symmetrically

\[\sum_{ijk} E_{ij} \otimes E_{jk} \otimes E_{ki} \]

If we write \(M_n \cong U \otimes V^* \), then this lives in
\[M_n \otimes M_n \otimes M_n^* \]
\[\cong (U \otimes V^*) \otimes (V \otimes W^*) \otimes (W \otimes U^*) \]
\[\cong U \otimes (V^* \otimes V) \otimes (W^* \otimes W) \otimes U^* \]

In this decomposition, MM is
\[Id_U \otimes Id_V \otimes Id_W \]
\[\sum_{ijk} E_{ij} \otimes E_{jk} \otimes E_{ki} \]

If we write \(M_n \cong U \otimes V^* \), then this lives in
\[M_n \otimes M_n \otimes M_n^* \]
\[\cong (U \otimes V^*) \otimes (V \otimes W^*) \otimes (W \otimes U^*) \]
\[\cong U \otimes (V^* \otimes V) \otimes (W^* \otimes W) \otimes U^* \]

In this decomposition, MM is
\[Id_U \otimes Id_V \otimes Id_W \]
Proof
Using group orbits

G: Finite group, acting irreducibly on \mathbb{C}^n.
S: G-orbit of in \mathbb{C}^n. Then (Schur’s Lemma)

$$\frac{n}{|S|} \sum_{v \in S} |v\rangle\langle v| = Id$$

Then we have

$$\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w| = Id \otimes Id \otimes Id$$

$$\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u| = MM$$
Proof

Suppose $S \subseteq \mathbb{C}^n$ satisfies

$$\frac{1}{|S|} \sum_{v \in S} |v\rangle \langle v| = \frac{1}{n} Id$$

Then we have

$$\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle \langle u| \otimes |v\rangle \langle v| \otimes |w\rangle \langle w| = Id \otimes Id \otimes Id$$

$$\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle \langle v| \otimes |v\rangle \langle w| \otimes |w\rangle \langle u| = MM$$
Proof

Suppose $S \subseteq \mathbb{C}^n$ satisfies
\[
\frac{1}{|S|} \sum_{v \in S} |v\rangle\langle v| = \frac{1}{n} \text{Id}
\]

Then we have
\[
\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w| = \text{Id} \otimes \text{Id} \otimes \text{Id}
\]
\[
\frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u| = MM
\]

$|S|^3$ summands
Proof

Consider

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]
Proof

Consider

$$\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|$$

Why consider this?

• Looks kinda like matrix multiplication. Almost G^3-invariant.

• Only need to sum of triples of distinct $u, v, w \in S$.
 $\Rightarrow |S|(|S| - 1)(|S| - 2)$ summands < $|S|^3$
\[\sum_{u,v,w \in S} |u \rangle \langle v - u | \otimes |v \rangle \langle w - v | \otimes |w \rangle \langle u - w | \]

Expand out, giving 4 kinds of terms:

1. **Matched** \(-|u \rangle \langle u | \otimes |v \rangle \langle v | \otimes |w \rangle \langle w |\)

2. **1 mismatch** \(|u \rangle \langle v | \otimes |v \rangle \langle v | \otimes |w \rangle \langle w |\)

3. **2 mismatches** \(|u \rangle \langle v | \otimes |v \rangle \langle w | \otimes |w \rangle \langle w |\)

4. **3 mismatches** \(|u \rangle \langle v | \otimes |v \rangle \langle w | \otimes |w \rangle \langle u |\)
Proof

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]

Expand out, giving 4 kinds of terms:

1. Matched $-|u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|

2. 1 mismatch $|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|

3. 2 mismatches $|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w|

4. 3 mismatches $|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u|$
Proof

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]

Expand out, giving 4 kinds of terms:

1. Matched $-|u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|$

2. 1 mismatch $|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|$

3. 2 mismatches $|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w|$

4. 3 mismatches $|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u|$
Proof

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]

Expand out, giving 4 kinds of terms:

1. Matched \(-|u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|\)

2. 1 mismatch \(|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|\)

3. 2 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w|\)

4. 3 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u|\)
Proof

\[\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w| \]

Expand out, giving 4 kinds of terms:

1. Matched \(-|u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|\) \rightarrow Id^{\otimes 3}
2. 1 mismatch \(|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|\)
3. 2 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w|\)
4. 3 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u|\)
Proof

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]

Expand out, giving 4 kinds of terms:

1. Matched \(-|u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w| \) \(\rightarrow Id \otimes \otimes^3\)

2. 1 mismatch \(|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w|\)

3. 2 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w|\)

4. 3 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u| \) \(\rightarrow MM\)
Proof

\[
\sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]

Expand out, giving 4 kinds of terms:

1. Matched \(- |u\rangle\langle u| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w| \rightarrow Id^{\otimes 3}\)
2. 1 mismatch \(|u\rangle\langle v| \otimes |v\rangle\langle v| \otimes |w\rangle\langle w| \rightarrow 0?\)
3. 2 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle w| \rightarrow 0?\)
4. 3 mismatches \(|u\rangle\langle v| \otimes |v\rangle\langle w| \otimes |w\rangle\langle u| \rightarrow MM\)
Proof

\[\sum_{u,v,w \in S} |u\rangle \langle v - u| \otimes |v\rangle \langle w - v| \otimes |w\rangle \langle u - w| \]

Expand out, giving 4 kinds of terms:

1. Matched \(-|u\rangle \langle u| \otimes |v\rangle \langle v| \otimes |w\rangle \langle w|\) \(\rightarrow \text{Id} \otimes^3\)
2. 1 mismatch \(|u\rangle \langle v| \otimes |v\rangle \langle v| \otimes |w\rangle \langle w|\) \(\rightarrow 0?\)
3. 2 mismatches \(|u\rangle \langle v| \otimes |v\rangle \langle w| \otimes |w\rangle \langle w|\) \(\rightarrow 0?\)
4. 3 mismatches \(|u\rangle \langle v| \otimes |v\rangle \langle w| \otimes |w\rangle \langle u|\) \(\rightarrow \text{MM}\)
Proof

If

$$\sum_{u \in S} u = 0 \quad (*)$$

Then those terms vanish, as desired.

Given $u \in \mathbb{C}^n$, $(*)$ is its projection onto trivial rep.

→ If \mathbb{C}^n is a nontrivial irrep, the sum must be 0
Proof

If \(S \) is a G-orbit in a nontrivial irrep, then

\[
MM = Id \otimes^3 + \frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w|
\]
Proof

If

\[\sum_{u \in S} u = 0 \]

\[\frac{1}{|S|} \sum_{v \in S} |v\rangle\langle v| = \frac{1}{n} \text{id} \]

Then

\[\text{Id} \otimes^3 + \frac{n^3}{|S|^3} \sum_{u,v,w \in S} |u\rangle\langle v - u| \otimes |v\rangle\langle w - v| \otimes |w\rangle\langle u - w| \]

\[= MM \]
The math behind the magic

Theorem [G.-Moore]: For $S \subseteq \mathbb{C}^n$ a unitary 2-design, $s = |S|$, $n \times n$ matrices can be multiplied using at most $s(s - 1)(s - 2) + 1$ multiplications.
The math behind the magic

Theorem [G.-Moore]: For $S \subseteq \mathbb{C}^n$ a unitary 2-design, $s = |S|$, $n \times n$ matrices can be multiplied using at most $s(s - 1)(s - 2) + 1$ multiplications.

Observe: If G finite group, V nontrivial irrep, $\nu \in V$ w/ $|\nu| = 1$, then the orbit $G\nu$ is a unitary 2-design.
The math behind the magic

Theorem [G.-Moore]: For $S \subseteq \mathbb{C}^n$ a unitary 2-design, $s = |S|$, $n \times n$ matrices can be multiplied using at most $s(s - 1)(s - 2) + 1$ multiplications.

The action of S_3 on \mathbb{C}^2 has an orbit of size 3 (equilateral triangle).

Corollary [G.-Moore]: $3(3 - 1)(3 - 2) + 1 = 7$.
Theorem [G.-Moore]: For $S \subseteq \mathbb{C}^n$ a unitary 2-design, $s = |S|$, $n \times n$ matrices can be multiplied using at most $s(s - 1)(s - 2) + 1$ multiplications.

The action of S_{n+1} on \mathbb{C}^n has an orbit of size $n+1$. Smallest possible, since must sum to zero.

Corollary [G.-Moore]: $(n + 1)n(n - 1) + 1 = n^3 - n + 1 < n^3.$
Okay, but is that the same as Strassen’s algorithm?

- Yes, by a theorem of de Groote ‘78
- But…we don’t care! It gives a conceptual explanation of the upper bound of 7.
Gave conceptual explanation of Strassen’s 7.

Open: Find a similar explanation that works over arbitrary rings (as Strassen’s algorithm does; ours needs $\frac{1}{2}$, $\frac{1}{3}$, and $\sqrt{3}$).

Further Ideas:
- Use of unitary d-designs for $d > 2$?
- Other symmetric algorithms? See also Burichenko; Chiantini-Ikenmeyer-Landsberg-Ottaviani.
Other explanations

Gastinel 1971
Yuval 1978
Chatelin 1986
Clausen 1988
Alekseyev 1997
Gates & Kreinovich 2000
Paterson 2009
Minz 2015
Chiantini, Ikenmeyer, Landsberg, Ottaviani 2016
Ikenmeyer & Lysikov 2017

Uses/reveals symmetries
EXTRA SLIDES
Observe: If G finite group, V nontrivial irrep, $v \in V$ w/ $|v| = 1$, then the orbit Gv is a unitary 2-design.

Proof:
1. $\sum_{g \in G} gv$ is the projection onto the trivial representation, so must be 0.
2. $\varphi = \sum_{g \in G} |gv\rangle \langle gv|$ is an G-endomorphism of V, so must be scalar by Schur’s Lemma. QED
Interlude on Recursion
Strassen’s recursion shows:

Using \(m \) products to multiply \(n_0 \times n_0 \) matrices

\[\rightarrow \]

Use \(O(n^\log n_0 \cdot m) \) operations to multiply \(n \times n \) matrices \((n \to \infty)\)
Recursive algorithms

<table>
<thead>
<tr>
<th>n</th>
<th>Lower bound on # mults</th>
<th>Upper bound</th>
<th>Needed to beat records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7 [HK71, Win71]</td>
<td>7 [Str69]</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>19 [Blä03]</td>
<td>23 [Lad76, JM86, CBH11]</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>34 [Blä03]</td>
<td>49 [Str69]</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>136 [Blä03]</td>
<td>7^3 [Str69]</td>
<td>138 would beat Le Gall ‘14</td>
</tr>
<tr>
<td>16</td>
<td>592 [Blä03]</td>
<td>7^4 [Str69]</td>
<td>600 would beat 2.3078 (cf. [AFLG15])</td>
</tr>
</tbody>
</table>

Theorem [Bläser ’03]: Needs at least $\frac{5}{2}n^2 - 3n$.

Current best lower bound (asymptotically):

Theorem [Landsberg ‘13]: Needs $\geq 3n^2 - o(n^2)$. (Stronger when $n > 84$.)