Frameworks

Advanced Machine Learning for NLP
Jordan Boyd-Graber
LSTM VARIANTS
What’s most important part of LSTM

Greff et al. explore

• No Input Gate (NIG)
• No Forget Gate (NFG)
• No Output Gate (NOG)
• No Input Activation Function (NIAF)
• No Output Activation Function (NOAF)
• No Peepholes (NP)
• Coupled Input and Forget Gate (CIFG) : GRU, $f_t = 1 - i_t$
• Full Gate Recurrence (FGR): Original LSTM paper
What's most important part of LSTM
GRU simplifies slightly

No explicit memory

Only one gate
GRU simplifies slightly

\[z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) \]
\[r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) \]
\[\tilde{h}_t = \tanh (W \cdot [r_t \ast h_{t-1}, x_t]) \]
\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]

Slightly fewer parameters
Simple extension, often slightly improve performance (but don’t always make sense for task)
Comparing architectures

- GRUs seem competitive
- LSTM seems to be good tradeoff
- Bi-directional often offers slight improvement
Why not convolutional nets?

- Doesn’t make sense linguistically
- Pretty expensive
- LSTMs usually work about as well
Why not convolutional nets?

- Doesn’t make sense linguistically
- Pretty expensive
- LSTMs usually work about as well
- GRU convnet provides better mechanism