Memory Networks

Advanced Machine Learning for NLP
Jordan Boyd-Graber
LSTM WALKTHROUGH

Slides adapted from Christopher Olah
RNN transforms Input into Hidden

(Can be other nonlinearities)
LSTM has more complicated innards
LSTM has more complicated innards

Built on gates!
Gates

- Multiply vector dimension by value in \([0, 1]\)
- Zero means: forget everything
- One means: carry through unchanged
- LSTM has three different gates
Cell State

Can pass through (memory)
Deciding When to Forget

Based on previous hidden state h_{t-1}, can decide to forget past cell state

\[
f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)
\]

Based on previous hidden state h_{t-1}, can decide to forget past cell state
Updating representation

Compute new contribution to cell state based on hidden state h_{t-1} and input x_t. Strength of contribution is i_t

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
Updating representation

\[C_t = f_t \times C_{t-1} + i_t \times \tilde{C}_t \]

Interpolate new cell value
Output hidden

Hidden layer is function of cell C_t, not h_{t-1}

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \times \text{tanh}(C_t)$$
Loss function

- To create a complete model, need to make a prediction
- Usually function of hidden layer(s)
 - Hinge loss of sentence label based on last word
 - Softmax of tag for each word