Kernel Functions for Support Vector Machines

Jordan Boyd-Graber University of Colorado Boulder LECTURE 9B

Statistics Professors HATE Him!

Slides adapted from Jerry Zhu

Can you solve this with linear separator?

Can you solve this with linear separator?

Can you solve this with linear separator?

Adding another dimension

Flatland

A Parable of Spiritual Dimensions

Edwin A.Abbott

Behold yon miserable creature. That Point is a Being like ourselves, but confined to the non-dimensional Gulf. He is himself his own World, his own Universe; of any other than himself he can form no conception; he knows not Length, nor Breadth, nor Height, for he has had no experience of them; he has no cognizance even of the number Two; nor has he a thought of Plurality, for he is himself his One and All, being really Nothing. Yet mark his perfect self-contentment, and hence learn this lesson, that to be self-contented is to be vile and ignorant, and that to aspire is better than to be blindly and impotently happy.

Problems get easier in higher dimensions

What's special about SVMs?

$$
\begin{equation*}
\max _{\vec{\alpha}} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\vec{x}_{i} \cdot \vec{x}_{j}\right) \tag{1}
\end{equation*}
$$

What's special about SVMs?

$$
\begin{equation*}
\max _{\vec{\alpha}} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\vec{x}_{i} \cdot \vec{x}_{j}\right) \tag{1}
\end{equation*}
$$

- This dot product is basically just how much x_{i} looks like x_{j}. Can we generalize that?

What's special about SVMs?

$$
\begin{equation*}
\max _{\vec{\alpha}} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\vec{x}_{i} \cdot \vec{x}_{j}\right) \tag{1}
\end{equation*}
$$

- This dot product is basically just how much x_{i} looks like x_{j}. Can we generalize that?
- Kernels!

What's a kernel?

- A function $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a kernel over \mathcal{X}.
- This is equivalent to taking the dot product $\left\langle\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right\rangle$ for some mapping
- Mercer's Theorem: So long as the function is continuous and symmetric, then K admits an expansion of the form

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\sum_{n=0}^{\infty} a_{n} \phi_{n}(x) \phi_{n}\left(x^{\prime}\right) \tag{2}
\end{equation*}
$$

What's a kernel?

- A function $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a kernel over \mathcal{X}.
- This is equivalent to taking the dot product $\left\langle\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right\rangle$ for some mapping
- Mercer's Theorem: So long as the function is continuous and symmetric, then K admits an expansion of the form

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\sum_{n=0}^{\infty} a_{n} \phi_{n}(x) \phi_{n}\left(x^{\prime}\right) \tag{2}
\end{equation*}
$$

- The computational cost is just in computing the kernel

Polynomial Kernel

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+c\right)^{d} \tag{3}
\end{equation*}
$$

Polynomial Kernel

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+c\right)^{d} \tag{3}
\end{equation*}
$$

When $d=2$:

(a)

(b)

Gaussian Kernel

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\exp -\frac{\left\|x^{\prime}-x\right\|^{2}}{2 \sigma^{2}} \tag{4}
\end{equation*}
$$

Gaussian Kernel

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\exp -\frac{\left\|x^{\prime}-x\right\|^{2}}{2 \sigma^{2}} \tag{4}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\sum_{n} \frac{\left(x \cdot x^{\prime}\right)^{n}}{\sigma^{n} n!} \tag{5}
\end{equation*}
$$

(All polynomials!)

Gaussian Kernel

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\exp -\frac{\left\|x^{\prime}-x\right\|^{2}}{2 \sigma^{2}} \tag{4}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
K\left(x, x^{\prime}\right)=\sum_{n} \frac{\left(x \cdot x^{\prime}\right)^{n}}{\sigma^{n} n!} \tag{5}
\end{equation*}
$$

(All polynomials!)

Tree Kernels

- Sometimes we have example x that are hard to express as vectors
- For example sentences "a dog" and "a cat": internal syntax structure

Tree Kernels

- Sometimes we have example x that are hard to express as vectors
- For example sentences "a dog" and "a cat": internal syntax structure

Tree Kernels

- Sometimes we have example x that are hard to express as vectors
- For example sentences "a dog" and "a cat": internal syntax structure

$\mathrm{D}_{\mathrm{D}}^{\mathrm{NP}} \mathrm{N} \quad \begin{gathered}\mathrm{D} \\ \mathrm{a} \\ \text { cat }\end{gathered}$

3/5 structures match, so tree kernel returns . 6

What does this do to learnability?

- Kernelized hypothesis spaces are obviously more complicated
- What does this do to complexity?

What does this do to learnability?

- Kernelized hypothesis spaces are obviously more complicated
- What does this do to complexity?
- Rademacher complexity for a kernel with radius Λ and data with radius $r: S \subset\left\{x: K(x, x) \leq r^{2}\right\}, H=\{x \mapsto w \cdot \phi(x):\|w\| \leq \Lambda\}$

$$
\begin{equation*}
\hat{\mathcal{R}}_{S}(H) \leq \sqrt{\frac{r^{2} \Lambda^{2}}{m}} \tag{6}
\end{equation*}
$$

What does this do to learnability?

- Kernelized hypothesis spaces are obviously more complicated
- What does this do to complexity?
- Rademacher complexity for a kernel with radius Λ and data with radius $r: S \subset\left\{x: K(x, x) \leq r^{2}\right\}, H=\{x \mapsto w \cdot \phi(x):\|w\| \leq \Lambda\}$

$$
\begin{equation*}
\hat{\mathcal{R}}_{S}(H) \leq \sqrt{\frac{r^{2} \Lambda^{2}}{m}} \tag{6}
\end{equation*}
$$

- Proof requires real analysis

Margin learnability

- With probability $1-\delta$:

$$
\begin{equation*}
R(h) \leq \hat{R}_{\rho}(h)+2 \sqrt{\frac{r^{2} \Lambda^{2} / \rho^{2}}{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} \tag{7}
\end{equation*}
$$

Margin learnability

- With probability $1-\delta$:

$$
\begin{equation*}
R(h) \leq \hat{R}_{\rho}(h)+2 \sqrt{\frac{r^{2} \Lambda^{2} / \rho^{2}}{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} \tag{7}
\end{equation*}
$$

- So if you can find a simple kernel representation that induces a margin, use it!

Margin learnability

- With probability $1-\delta$:

$$
\begin{equation*}
R(h) \leq \hat{R}_{\rho}(h)+2 \sqrt{\frac{r^{2} \Lambda^{2} / \rho^{2}}{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} \tag{7}
\end{equation*}
$$

- So if you can find a simple kernel representation that induces a margin, use it!
- ...so long as you can handle the computational complexity

How does it effect optimization

- Replace all dot product with kernel evaluations $K\left(x_{1}, x_{2}\right)$
- Makes computation more expensive, overall structure is the same
- Try linear first!

Recap

- This completes our discussion of SVMs
- Workhorse method of machine learning
- Flexible, fast, effective

Recap

- This completes our discussion of SVMs
- Workhorse method of machine learning
- Flexible, fast, effective
- Kernels: applicable to wide range of data, inner product trick keeps method simple

