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Can you solve this with linear separator?
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Adding another dimension

Behold yon miserable creature. That Point is a
Being like ourselves, but confined to the
non-dimensional Gulf. He is himself his own
World, his own Universe; of any other than
himself he can form no conception; he knows
not Length, nor Breadth, nor Height, for he has
had no experience of them; he has no
cognizance even of the number Two; nor has he
a thought of Plurality, for he is himself his One
and All, being really Nothing. Yet mark his
perfect self-contentment, and hence learn this
lesson, that to be self-contented is to be vile
and ignorant, and that to aspire is better than
to be blindly and impotently happy.

Jordan Boyd-Graber | Boulder Kernel Functions for Support Vector Machines | 3 of 13



Problems get easier in higher dimensions
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What’s special about SVMs?

max
~α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
i=1

αiαjyiyj(~xi · ~xj) (1)

• This dot product is basically just how much xi looks like xj . Can
we generalize that?

• Kernels!
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What’s a kernel?

• A function K : X × X 7→ R is a kernel over X .

• This is equivalent to taking the dot product 〈φ(x1), φ(x2)〉 for
some mapping

• Mercer’s Theorem: So long as the function is continuous and
symmetric, then K admits an expansion of the form

K (x , x ′) =
∞∑
n=0

anφn(x)φn(x ′) (2)

• The computational cost is just in computing the kernel
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Polynomial Kernel

K (x , x ′) = (x · x ′ + c)d (3)

When d = 2:
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Gaussian Kernel

K (x , x ′) = exp−‖x
′ − x‖2

2σ2
(4)

which can be rewritten as

K (x , x ′) =
∑
n

(x · x ′)n

σnn!
(5)

(All polynomials!)
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Tree Kernels

• Sometimes we have example x that are hard to express as vectors

• For example sentences “a dog” and “a cat”: internal syntax
structure

3/5 structures match, so tree kernel returns .6
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What does this do to learnability?

• Kernelized hypothesis spaces are obviously more complicated

• What does this do to complexity?

• Rademacher complexity for a kernel with radius Λ and data with
radius r : S ⊂ {x : K (x , x) ≤ r2}, H = {x 7→ w · φ(x) : ‖w‖ ≤ Λ}

R̂S (H) ≤
√

r2Λ2

m
(6)

• Proof requires real analysis
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Margin learnability

• With probability 1− δ:

R(h) ≤ R̂ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
(7)

• So if you can find a simple kernel representation that induces a
margin, use it!

• . . . so long as you can handle the computational complexity
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How does it effect optimization

• Replace all dot product with kernel evaluations K (x1, x2)

• Makes computation more expensive, overall structure is the same

• Try linear first!
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Recap

• This completes our discussion
of SVMs

• Workhorse method of machine
learning

• Flexible, fast, effective

• Kernels: applicable to wide
range of data, inner product
trick keeps method simple
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