Reinforcement Learning

Greg Grudic

Reinforcement Learning (RL)

Autonomous agent learns without human intervention

- Agent learns by stochastically interacting with its environment, getting infrequent rewards
- Goal: maximize reward

Reinforcement Learning

- Addresses the temporal credit assignment problem:
 - Delayed reward (HARD problem!)
- Some successful RL applications:
 - TD gammon (Tesauro)
 - Packing containers (Moore)
 - Elevator dispatch (Crites and Barto)

Reinforcement Learning Problem

Markov Decision Processes

Assume
- Finite set of states \(S \)
- Set of actions \(A \)
- At each discrete time, agent observes state \(s_t \in S \) and chooses action \(a_t \in A \)
- Then receives immediate reward \(r_t \)
- And state changes to \(s_{t+1} \)
- Markov assumption: \(s_{t+1} = \delta(s_t, a_t) \) and \(r_t = c(s_t, a_t) \)
 - I.e., \(r_t \) and \(s_{t+1} \) depend only on current state and action
 - Functions \(c \) and \(\delta \) may be nondeterministic
 - Functions \(c \) and \(\delta \) not necessarily known to agent

Agent’s Learning Task

Execute actions in environment, observe results, and:
- Learn action policy \(\pi: S \rightarrow A \) that maximizes
 \[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \]
 from any starting state in \(S \)
- Here \(0 \leq \gamma < 1 \) is the discount factor for future rewards

Different from supervised learning:
- Target function \(c: S \rightarrow A \)
- But we have no training examples of form \((s, a) \)
- Training examples are of form \((s, a, r) \)
Value Function

To begin, consider deterministic worlds...

For each possible policy π the agent might adopt, we can define an evaluation function over states

\[V^π(s) = r(s, a) + \gamma V^π(δ(s, a, a)) \]

where \(s, a, \ldots \) are generated by policy \(π \) starting at state \(s \)

Rmined, the task is to learn the optimal policy \(π^* \)

\[π^* ⊆ \text{argmax}_π V^π(s, π(s)) \]

What to Learn

We might try to have agent learn the evaluation function \(V^∗ \) (which we write as \(V^π \))

It could then do a look-ahead search to choose best action from any state \(s \) because

\[π^*(s) = \text{argmax}_a [r(s, a) + \gamma V^π(δ(s, a, a))] \]

A problem:

- This works well if agent knows \(δ : S × A → S \) and \(r : S × A → \mathbb{R} \)
- But when it doesn’t, it can’t choose actions this way

Q Function

Define new function very similar to \(V^∗ \)

\[Q(s, a) = r(s, a) + \gamma V^π(δ(s, a, a)) \]

If agent learns \(Q \), it can choose optimal action even without knowing \(δ \)

\[π^*(s) = \text{argmax}_a [r(s, a) + \gamma V^π(δ(s, a, a))] \]

\[π^*(s) = \text{argmax}_a Q(s, a) \]

\(Q \) is the evaluation function the agent will learn

Training Rule to Learn \(Q \)

Note \(Q \) and \(V^∗ \) closely related:

\[V^∗(s) = \max_a Q(s, a') \]

Which allows us to write \(Q \) recursively as

\[Q(s, a) = r(s, a) + \gamma \max_{a'} Q(δ(s, a, a')) \]

Nice! Let \(Q \) denote learner’s current approximation to \(Q \). Consider training rule

\[Q(s, a) → r + \gamma \max_{a'} Q(δ(s, a, a')) \]

where \(a' \) is the state resulting from applying action \(a \) in state \(s \)

Q Learning for Deterministic Worlds

For each \(s, a \) initialize table entry \(Q(s, a) → 0 \)

Observe current state \(s \)

Do forever:

- Select an action \(a \) and execute it
- Receive immediate reward \(r \)
- Observe the next state \(s' \)
- Update the table entry for \(Q(s, a) \) as follows:

\[Q(s, a) → r + \gamma \max_{a'} Q(δ(s, a, a')) \]

- \(s → s' \)
Updating Q

Initial state: \(s_1 \)

Next state: \(s_2 \)

\[Q(s, a_{opt}) = r + \gamma \max_{a'} Q(s', a') \]

\[= r + \gamma \max_{a'} Q(s', a') \]

\[= r + \max_{a'} [r(s', a') + \gamma Q(s', a')] \]

\[= r + \max_{a'} [r(s', a') + \gamma Q(s', a')] \]

\[= 0.9 \cdot \max_{a'} [r(s', a') + \gamma Q(s', a')] \]

\[\leq 0.9 \cdot \max_{a'} [r(s', a') + \gamma Q(s', a')] \]

\[\Delta = Q(s, a_{opt}) - Q^*(s) \]

Proof: Define a full interval to be an interval during which each \((s, a) \) is visited. During each full interval the largest error in \(Q \) table is reduced by factor of \(\gamma \).

Let \(\Delta \) be the maximum error in \(Q \) at \(s \) that is:

\[\Delta = \max_a (Q(s, a) - Q^*(s)) \]

For any full interval \(Q(s, a) \) updated on iteration \(e \), the error in the revised estimate \(Q_{e+1}(s, a) \) is:

\[|Q_{e+1}(s, a) - Q^*(s)| \leq |r + \gamma \max_{a'} Q(s', a') - \gamma Q^*(s)| \]

\[\leq |r + \gamma \max_{a'} Q(s', a') - \gamma Q^*(s)| \]

\[\leq \gamma |\max_{a'} [r(s', a') + \gamma Q(s', a')] - \gamma Q^*(s)| \]

\[\leq \gamma |\max_{a'} [r(s', a') + \gamma Q(s', a')] - \gamma Q^*(s)| \]

Note we used general factor:

\[|\max_a f(a) - \max_a g(a)| \leq \max_a |f(a) - g(a)| \]

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine \(V, Q \) by taking expected values:

\[V^*(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots] \]

\[= E[\sum_{t=0}^{\infty} \gamma^t r_{t+1}] \]

\[Q(s, a) = E[V(s, a) + \gamma V^*(s, a)] \]

Temporal Difference Learning

Q-learning: reduce discrepancy between successive Q-estimates

One step time difference:

\[Q^t(s, a) = r + \gamma \max_{a'} Q(s', a') \]

Why not two-steps?

\[Q^t(s, a) = r + \gamma r_{t+1} + \gamma^2 \max_{a'} Q(s', a') \]

Or \(a' \):

\[Q^t(s, a_{opt}) = r + \gamma r_{t+1} + \gamma^2 \max_{a'} Q(s', a') \]

Blend all of these:

\[Q^t(s, a) = (1 - \lambda) Q^t(s, a) + \lambda Q^t(s, a) + \lambda^2 Q^t(s, a) + \ldots \]

Temporal Difference Learning

Q-learning generalizes to nondeterministic worlds

After training rule to:

\[Q_{e+1}(s, a) = Q_e(s, a) - \gamma \alpha [r + \gamma \max_{a'} Q_{e+1}(s', a') - Q_{e+1}(s, a)] \]

where:

\[\alpha_e = \frac{1}{1 + \gamma \alpha_e} \]

Can still prove convergence of \(Q \) to \(Q \) [Watkins and Dayan, 1992]

Nondeterministic Case
RL Application Domains

Successful domains
- Low dimensional discrete state space
- 1,000,000’s learning runs \(\text{(simulation)}\)

Not so successful domains
- Large continuous state space
- 1,000,000’s learning runs *not* practical

Continuous Domains? Robotics

- Hit an obstacle: get a **negative** reward
- Reach goal: get a **positive** reward
- Reach goal faster: get a **bigger positive** reward

A (simple?) Robotics Problem

Even Simple tasks are difficult to Program

Other Continuous Problems

- Process control
 - Chemical
 - Power
- Financial modeling
- Software agents on web
 - State space defined by hit statistics
- TCOM problems, etc

Why Is RL Hard in Large Continuous Domains?

- Stochastic search in large continuous domains is hard

 One possible solution: use prior domain knowledge to direct search
Reinforcement Learning (MDP)

- Policy: \(\pi(s,a) = \Pr(a_s = a|s = s) \)
- Reinforcement feedback (environment) \(r_t \)
- Goal: modify policy to maximize reward
 \(\rho(\pi) = E\left[\sum_{t=0}^{\infty} r_t | s_0 = s, \pi \right] \)
- State-action value function
 \(Q^\pi(s,a) = E\left[\sum_{t=0}^{\infty} r_t | s_0 = s, a_0 = a, \pi \right] \)

Approaches to RL

- Value Function RL
- Policy Gradient RL
- Actor-Critic RL
 – combines value functions and policy gradients

Value Function RL

- Learn the value of executing each action in each state (Value Function \(Q^\pi(s,a) \))
- In each state, execute the most valuable action
- Problem:
 – Value function learning infeasible in high dimensional state spaces

Policy Gradient RL

- Parameterize agent’s policy (\(\Theta \))
- Estimate how the value of a policy (\(\rho \)) changes as \(\Theta \) changes: \(\frac{\partial \rho}{\partial \Theta} \)
- Update policy (gradient ascent):
 \(\Theta_{t+1} = \Theta_t + \alpha \frac{\partial \rho}{\partial \Theta} \)
- Problems:
 – Local minimum and slow convergence

The Better Approach for large domains: Policy Gradient RL

Why?

- Globally optimal solutions are intractable
- Computational cost of a performance gradient estimate is linear with size of state space
 – Value functions have exponential growth
- Prior knowledge directly encoded in policy parameter vector

PGRL Algorithms

- Agent uses a stochastic policy
 \(\pi(s,a|\Theta) = \Pr\{a = a|s; \Theta\} \)
 \(\Delta \Theta = \frac{\partial \rho}{\partial \Theta} = f\left(\frac{\partial \pi}{\partial \Theta}, Q^\pi(s,a) \right) \)
 \(\frac{\partial \pi}{\partial \Theta} \) Must exist and be bounded

Williams 1987, 1992; Baird and Moore 1999; Baxter and Bartlett 2000; Sutton, McAllester, Singh, Mansour, 2000; Konda and Tsitsiklis 2000
Implications of Stochastic Policy

- Use stochastic exploration during learning
- Stochastic exploration can be expensive in large state spaces
 - High variance in performance gradient estimate
- Must direct search during learning!

Performance Gradient Estimates

- **Need relative values of executing actions in state**
- Stochastic PG algorithms obtain absolute estimates
 - Relative estimates are indirectly (stochastically) obtained after many visits to the same state
 - poor sampling technique

Action Transition Policy Gradient (ATPG)

- Policy Gradient estimates restricted to when agent changes actions
- Gives a direct estimate of the *relative* value of executing actions
- **Theorem**: Convergence to locally optimal policies theoretically guaranteed (Grudic and Ungar ICML 2000)

ATPG Simulation Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Episodes for Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>REINFORCE</td>
<td>> 1,000,000 (L=200)</td>
</tr>
<tr>
<td>PFA</td>
<td>240 (sd 340) (L=1)</td>
</tr>
<tr>
<td>ATPG</td>
<td>230 (sd 30) (L=3)</td>
</tr>
</tbody>
</table>

Boundary Localized Reinforcement Learning (BLRL)

- Transform a stochastic policy into one that is deterministic everywhere except near mode boundaries
- Any stochastic policy that generalizes in state can be transformed to BLRL
 - Parameters shared among states

Advantages of BLRL

- **Theorem**: Convergence to locally optimal mode switching policies is obtained by searching near mode boundaries (Grudic and Ungar, AAAI 2000)
- Most of the state space can be ignored when estimating a performance gradient
BLRL Search Region

2-D Simulation

Convergence in Higher Dimensions

Controllers are Typically Deterministic

Mode Examples From Robotics

Mode Switching Controllers
Other Controller Paradigms: Action Superposition Controllers

- Deterministic continuous action space
 \[a_j = \sum_{i=1}^{M} a_i g_i(x, \Theta) \]
- Used in Potential Field Methods
 - Path planning

Deterministic Policy Gradient (DPG)

- Most robot controllers are deterministic
- Stochastic PG algorithms will not directly work with these controllers
 - E.G. \(\frac{d\pi}{d\Theta} \) is infinite
- Propose a deterministic PG formulation

Deterministic Perturbations in Policy Space

Goal
Robot
Obstacle
Static Navigational Feature

Which Policy Parameters are Important?

- Deterministic policy defined by \(M \) functions
 \[g_1(s(t), \Theta), \ldots, g_M(s(t), \Theta) \]
- Theorem:
 \[\frac{d\rho}{d\theta_k} = \int \left(\sum_{i=1}^{M} \frac{\partial g_i(s,t)}{\partial \theta_k} \frac{\partial g_i(s,t)}{\partial \theta_k} \right) dt \]
 - Can ignore all \(\theta_k \) when \(\frac{d\rho}{d\theta_k} \) is small

Deterministic Policy Gradient Algorithm

1. Estimate which parameters are significant under the current policy
2. Systematically perturb these parameters and estimate a performance gradient
3. Update the policy in a direction of increased reward
4. GOTO Step 1

Action Superposition Simulation

Initial | Learned
AS Convergence Results

Mode Switching Simulation

MS Convergence Results

Does this work on Actual Robots?

Yes!

Rate of Convergence Results

- ATPG
- BLRL
- DPG
Other Types of Prior Knowledge

- Secondary Reinforcers
- Control the relative amounts of these (Grudic and Ungar IJCAI 01)

Conclusions

- Policy Gradient Framework in RL effective in large problem domains:
 - Selective sampling of the state space (ATPG)
 - BLRL reduces search to mode boundaries
 - Deterministic policy perturbations (DPG) give effective performance gradient estimates for deterministic controllers
- However
 - Prior domain knowledge is required (and easily incorporated!)
 - Globally optimal solutions are not learned