Nearest Neighbor Classification and Regression

Greg Grudic
(Notes borrowed from Thomas G. Dietterich and Tom Mitchell)

Notes:

• Downloadable Machine Learning Software
 – Many algorithms studied in this class are implemented in JAVA in the WEKA environment:
 • http://www.cs.waikato.ac.nz/ml/weka/

• Homework 1:
 – Equations from MATLAB code
 – Due Sept. 21
Learning Classification Models

- Collect Training data
- Build Model: $\text{happy} = f(\text{feature space})$
- Make a prediction

Binary Classification Learning Data...

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>...</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0.95013</td>
<td>0.58279</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Example 2</td>
<td>0.23114</td>
<td>0.4235</td>
<td>...</td>
<td>-1</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.8913</td>
<td>0.43291</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.018504</td>
<td>0.76037</td>
<td>...</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multi-Class Classification Learning

Data...

<table>
<thead>
<tr>
<th>Example</th>
<th>Dimension 1 x_1</th>
<th>Dimension 2 x_2</th>
<th>...</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0.95013</td>
<td>0.58279</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Example 2</td>
<td>0.23114</td>
<td>0.4235</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.8913</td>
<td>0.43291</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.018504</td>
<td>0.76037</td>
<td>...</td>
<td>6</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ...

Learning Regression Models

- Collect Training data
- Build Model: stock value = f(feature space)
- Make a prediction
Regression Learning Data...

<table>
<thead>
<tr>
<th></th>
<th>Dimension 1</th>
<th>Dimension 2</th>
<th>...</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0.95013</td>
<td>0.58279</td>
<td>...</td>
<td>0.22</td>
</tr>
<tr>
<td>Example 2</td>
<td>0.23114</td>
<td>0.4235</td>
<td>...</td>
<td>-17.34</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.8913</td>
<td>0.43291</td>
<td>...</td>
<td>50.1</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.018504</td>
<td>0.76037</td>
<td>...</td>
<td>6.2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The Learning Data

- Symbolic Representation of N learning examples of d dimensional inputs

$$
\begin{pmatrix}
 x_{11} & \cdots & x_{1d} & y_1 \\
 \vdots & \ddots & \vdots & \vdots \\
 x_{N1} & \cdots & x_{Nd} & y_N
\end{pmatrix}
$$
Nearest Neighbor Algorithm

- Given training data \((x_1, y_1), \ldots, (x_N, y_N)\)
- Define a distance metric between points in input space. Common measures are:
 - Euclidean (squared) \(D(x, x_i) = \sum_{j=1}^{d} (x_j - x_{i,j})^2\)
 - Weighted Euclidean \(w_j \geq 0\)
 \[D(x, x_i) = \sum_{j=1}^{d} w_j (x_j - x_{i,j})^2\]

K-Nearest Neighbor Model

- Given test point \(x\)
- Find the \(K\) nearest training inputs \(x_1, \ldots, x_N\) to \(x\) given the distance metric \(D(x, x_i)\)
- Denote these points as \((x_1, y_1), \ldots, (x_K, y_K)\)
K-Nearest Neighbor Model

• Regression:

\[\hat{y} = \frac{1}{K} \sum_{k=1}^{K} y_k \]

• Classification:

\[\hat{y} = \text{most common class in set } \{y_1, ..., y_K\} \]

Picking K

• Goal of Supervised Learning
 – Accurate prediction on future data!!!
• Use N fold cross validation
 – Pick K to minimize the cross validation error
• For each of N training example
 – Find its K nearest neighbors
 – Make a prediction based on these K neighbors (classification and regression)
 – Calculate Error in Prediction (difference between predicted out and actual out)
 – Output average error over all examples
• Use the K that gives lowest average error over the N training examples
Measuring Model Accuracy: Regression

- Assume a set of data \((x_1, y_1), ..., (x_K, y_K)\)
- Regression accuracy of model M
 - Two commonly used metrics
 - Mean Square Error
 \[
 \text{error}_{M(x)} = \frac{1}{K} \sum_{i=1}^{K} (y_i - M(x_i))^2 = \frac{1}{K} \sum_{i=1}^{K} (y_i - \hat{y}_i)^2
 \]
 - Relative Error
 \[
 \text{error}_{M(x)} = \frac{\sum_{i=1}^{K} (y_i - M(x_i))^2}{\sum_{i=1}^{K} (y_i - \bar{y})^2}
 \]

Measuring Model Accuracy: Classification

- Assume a set of data \((x_1, y_1), ..., (x_K, y_K)\)
- Classification accuracy of model M
 \[
 \text{error}_{M(x)} = \frac{1}{K} \sum_{i=1}^{K} c(x_i, y_i, M(x_i))
 \]
 Where
 \[
 c(x_i, y_i, M(x_i)) = \begin{cases} 0 & \text{if } y_i = M(x_i) \\ 1 & \text{otherwise} \end{cases}
 \]
K-Nearest Neighbor Model: Weighted by Distance

- **Regression:**
 \[\hat{y} = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)} \]

- **Classification:**
 \[\hat{y} = \text{most common class in weighted set} \]
 \[\left\{ \frac{1}{D(x, x_1)} y_1, \ldots, \frac{1}{D(x, x_K)} y_K \right\} \]

Picking \(w_1, \ldots, w_d \)

- Use N fold cross validation
 - Pick values that minimize the cross validation error
 - This can be computationally expensive...
- Dimensionality reduction...
Nearest Neighbor Properties –
Class Decision Boundaries: The Voronoi Diagram

Each line segment is equidistance between points in opposite classes. The more points, the more complex the boundaries.

K-Nearest Neighbor Algorithm Characteristics

- Universal Approximator
 - Can model any many to one mapping arbitrarily well
- Curse of Dimensionality: Can be easily fooled in high dimensional spaces
 - Dimensionality reduction techniques are often used
- Model can be slow to evaluate for large training sets
 - kd-trees can help
 - Selectively storing data points also helps
kd-trees

More Recent Optimized NN Searches

- Cover Trees
 - http://hunch.net/~jl/projects/cover_tree/cover_tree.html
- Fast for large d…