Using the Pumping Lemma for Regular Languages

Theory of Computation

CSCI 3434, Spring 2010

Statement of the Pumping Lemma (P.L.) for regular languages:

For every regular language L, $\exists k \in \mathbb{N}$ such that

$\forall x \in L$, $\forall x_1, x_2, x_3$ with $x_1 x_2 x_3 = x$, $|x_2| = k$, $\exists u, v, w$ with $x_2 = u v w$, $|v| \geq 1$ such that $x_1 u v^* w x_3 \subseteq L$.

(Note that $x_1 u v w x_3 = x$.)

Using the Pumping Lemma

To prove a language L is not regular

1. Assume L is regular
2. Let k be the constant from PL
3. Choose a string $x \in L$
 - Definition based on k
4. Choose a substring of x of length k to be x_2
5. Consider all possible substrings v of x_2 with $|v| \geq 1$. Show that some string of the form $x_1 u v^* w x_3 \notin L$ for all possibilities for v.
 - Usually $x_1 u w x_3$ or $x_1 u v v w x_3$
6. State that this is a contradiction to the PL, so conclude that assumption was false, so L is not regular.