
A Survey of Machine Learning Approaches to Robotic

Path-Planning

Michael W. Otte

Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309-0430

Abstract

Parameters in robotic systems have traditionally been hand-tuned by human

experts through painstaking trail-and-error. In addition to requiring a sub-

stantial number of man-hours, hand-tuning usually results in robotic systems

that are brittle. That is, they can easily fail in new environments. In the last

decade or two, designers have realized that their systems can be made more

robust by incorporating concepts developed in the field of machine learning.

This paper presents a survey of how machine learning has been applied to

robotic path-planning and path-planning related concepts.

This survey is concerned with ideas at the juncture of the two otherwise unrelated fields of

machine learning and path-planning. Both of these are mature research domains, complete

with large bodies of literature. To fully understand the work at their intersection, one must

have a grasp of the basic concepts relevant to both. Therefore, this paper is organized into

three chapters. One each for robotics, machine learning, and the applications of machine

learning to path-planning. Short descriptions of each chapter are provided in the remainder

of this introduction. Readers are encouraged to use these outlines to gauge which chapters

will be most useful to them, and to skip reviews of familiar work.

Chapter 1 provides a high-level overview of robotic systems in general. A complete robotic

system is outlined to frame how the various subsystems interact with each other. However,

the bulk of chapter 1 is dedicated to the representation and planning robotic subsystems, as

these are most relevant to the path-planning problem. The last half of this chapter contains

an in-depth discussion on path-planning algorithms, with a particular focus on graph-search

techniques. Readers with a sufficient grounding in robotics may be able to skip the first half

of chapter 1 without compromising their ability to understand the rest of the paper. However,

even seasoned roboticists may find the review of graph-search algorithms interesting (starting

with Section-1.5), as it covers what I consider to be the major path-planning breakthroughs

of the last decade1.

Chapter 2 provides general background information on machine learning. Short summaries

are provided for the subfields of supervised learning and reinforcement learning, and a handful

of specific algorithms are also examined in-depth. Note that the content of this chapter

has been chosen based on successful applications to path-planning in the last few years, it

does not represent an exhaustive survey of all machine learning techniques. The purpose of

chapter 2 is to give readers unfamiliar with machine learning enough background information

to understand the rest of this paper. Machine learning experts may opt to skip this review

of basic techniques.

Chapter 3 is a review of machine learning applications to path-planning. Attention is also

given to other machine learning robotics applications that are related to path-planning

and/or have a direct effect on path-planning. Machine learning is a multi-purpose tool

that has been used in conjunction with robotics in a variety of ways. Therefore, the organi-

zation of chapter 3 reflects this fact. Chapter sections are mostly self-contained, with each

describing and discussing a unique junction between the two fields. Throughout, an attempt

is made to show how each idea fits into the larger context of a robotic system.

1 Robotics Background

In order for a robot to operate autonomously, it must be capable of interacting with its

environment in an intelligent way [Lee, 1996]. This implies that an autonomous robot must

be able to capture information about the environment and then perform actions based on

1I have chosen to include this review because I am personally interested in graph-search algorithms applied to
path-planning, and believe that the advances covered in Section-1.5 have lead to a fundamental shift in the way that
field-robotics is approached.

that information. A hypothetical robotic system can be dissected into four subsystems:

sensing → representation→ planning → actuation

Although, the lines between these subsystems are often blurred in practice.

A sensor is the term given to any part of the robotic system that provides data about the

state of the environment. Although the definition of a sensor is necessarily broad, the type

of information provided by sensors can be broken into three main categories:

1. The world (terrain shape, temperature, color, composition)

2. The system and its relationship to the world (battery charge, location, acceleration)

3. Other concepts of interest (collaborator, adversary, goal, reward).

Any information available to the robot must be provided a priori or obtained on-line through

sensor observations.

The representation is the method by which a robot stores and organizes information about

the world. Simple representations may consist of a single value—perhaps indicating the

output of a particular sensor. Complex representations may include high-level graphical

models and/or geometric maps of the environment.

The planning subsystem (or planner) is responsible for deciding how the robot should behave,

with respect to a predefined task, given the information in the representation. A planner

might calculate anything from a desired speed/direction of travel to an entire sequence of

actions.

Actuation is the method by which the robot acts on the environment. This may involve send-

ing power signals to motors, servos, or other devices that can modify the physical relationship

between the robot and the environment.

All four system components are interrelated. However, in the context of this paper, the

relationship between the representation and planning subsystems is especially important.

The structure and content of the representation define what kinds of decisions the planner is

capable of making, and ultimately the set of action plans available to the robot. Conversely, a

particular planning system may require a specific type of representation in order to function.

Most of this chapter is devoted to these two subsystems. However, because the particular

sensors available to a robot may influence the type of representation used, a short discussions

on sensors is also required.

1.1 Sensors

In the context of robotics, the term sensor is broad and ambiguous. It can be used to describe

any device or module that is capable of capturing information about the world. Instead of

trying to define exactly what a sensor is, it is perhaps more helpful to give examples of

different kinds of sensors.

Active sensors glean information about the world by sending a signal into the world and then

observing how information from that signal propagates back to the sensor. For instance,

devices like radar, sonar, lasers, and lidar send a light or sound wave into the world, and

then observe how it is reflected by the environment. Tactile sensors probe the environment

physically, much like a human feeling their way around a room in the dark.

Passive sensors function by capturing information that already exists in the environment.

This includes devices such as thermometers, accelerometers, altimeters, tachometers, micro-

phones, bumper sensors, etc. Devices like cameras, infrared sensors, and GPS receivers are

also considered passive sensors—although their assumptions about certain types of informa-

tion can be violated (e.g. natural light and GPS signals seldom propagate into cavernous

environments).

Sensors can sometimes be described as being either ranged or contact sensors. Ranged

sensors capture information about the environment from a distance, and include devices like

sonar, radar, cameras, and lidar. In contrast, contact sensors require physical contact with

the part of the environment they are sensing, and include devices like thermometers, tactile

sensor, strain gages, and bumper sensors.

It is also useful to make the distinction between grid-based (or image) sensors, and other

types of sensors. Image sensors capture multiple (and often simultaneous) readings about

a swath of the environment, while other sensors only capture information about a point

or along a directional vector. Cameras are arguably the most common type of grid-based

sensor. Each pixel represents a light value associated with a particular ray traveling through

the environment. Similarly, a laser imaging sensor known as lidar assembles many individual

laser readings into a spatially related collection of depth values. Theoretically, any collection

of individual sensors can form an image sensor, as long as the spatial relationships between

the individual sensors are known. Images are appealing because they provide an additional

level of knowledge beyond an unorganized collection of individual sensor readings.

Often raw sensor readings are used in conjunction with prior domain knowledge to infer

high-level information about the world, or to increase the accuracy of existing sensor data.

For example, cameras and lasers are used to create ‘people detectors’ in [Haritaoglu et al.,

1998] and [Bellotto and Hu, 2009], respectively, and pattern recognition is used to find the

location of faces in pictures in [Rowley et al., 1998]. Particle, Kalman, and other filters

are often used with GPS data to provide more accurate position measurements [Kltagawa,

1996,Kalman, 1960].

From the representation subsystem’s point-of-view, these self-contained modules are essen-

tially meta-sensors. That is, software-based sensors that take hardware sensor readings as

input, and output more valuable (hopefully) data than a simple hardware sensor. In prac-

tice, meta-sensors may either interact with the rest of the system in much the same way as

a simple hardware sensor, or they may require data from the representation subsystem to

achieve their task. Meta-sensors fit into the theoretical robotic system as follows:

sensor→ (meta−sensor↔ representation)→ planning → actuation

Given a particular sensor, or set of sensors, there are a few things that a system designer

must keep in mind when creating the representation and planning subsystems. These include:

sensor accuracy, range, time/position of relevance, sampling rate, and usefulness of the data

provided.

1.2 Representation

The representation subsystem decides what information is relevant to the robot’s task, how

to organize this data, and how long it is retained. Simple representations may consist if

an instantaneous sensor reading, while complex representations may create an entire model

of the environment and/or robot. It should be noted that using a complex representation

is not a precondition for achieving complexity in the resulting robot behavior. It has been

shown that robust and sophisticated behavior can be produced using simple representations

of the environment and vise versa [Braitenberg, 1984]. However complex representations

may allow a planning system to develop plans that ‘think’ further into the future. This can

be advantageous because knowledge about intended future actions can decrease a system’s

susceptibility to myopic behavior.

Although planning is throughly addressed in sections 1.3-1.5, it is useful to define a few

planning concepts that are of relevance to the representation subsystem. Planners that

operate on a few simple rules are called reactive planners [Lee, 1996]. These rules may include

things like ‘move away from light,’ ‘move toward open space,’ ‘follow a line,’ etc. [Braitenberg,

1984]. These types of planners require relatively simple representations. However, because

all actions are highly Dependant on local environmental phenomena, they are also relatively

short-sighted when considering what their future actions will be.

In contrast, model-based (or proactive planners) create relatively detailed action plans. For

instance, an entire sequence of movements or a high-level path from the robot’s current

position to a goal position. In other words, proactive planners assume the robot has enough

information to know exactly what it would do in the future, assuming it can forecast all

changes in environmental state. Current actions may also be influenced by what the system

expects to happen in the future. For instance, a rover might temporarily move away from

its goal location, in order to avoid hitting an obstacle in the future. Proactive planners

generally require more complex representations such as graphical models of environmental

connectivity, maps, etc.

In practice, most planning frameworks utilizes a combination of proactive and reactive plan-

ning. Proactive planners work toward long-term goal(s), while reactive planners provide

flexibility by allowing modifications in response to quickly changing or uncertain environ-

ments. Therefore, most robots use both high-level and low-level representations.

There are numerous different types of representations that have been employed in robotic

systems to date. Far too numerous, in fact, to adequately address in this paper. In general,

low level representations are simple—for instance, a vector of infrared values obtained from

a ring of sensors placed around the robot [Minguez and Montano, 2004]. In these types of

systems it is not uncommon for representation values to be used as direct input into a low

level controller (i.e. the robot moves in the direction of the sensor with the smallest infrared

reading).

A common type of high-level representation is a map—which, at the very least, is a world

model capable of differentiating between unique locations in the environment. Theoretically,

if all possible map types are considered to exist in a high dimensional space, then one of

the dimensions of that space represents environmental recoverability. That is, the degree to

which the organization of the environment can be recovered from the representation. [Lee,

1996] describes four representations at points along this continuum. The following list is his

description of each, verbatim:

1. Recognizable Locations: The map consists of a list of locations which can be reliably

recognized by the robot. No geometric relationships can be recovered.

2. Topological Maps: In addition to the recognizable locations, the map records which

locations are connected by traversable paths. Connectivity between visited locations

can be recovered.

3. Metric Topological Maps: this term is used for maps in which distance and angle

information is added to the path description. Metric information can be recovered

about paths which have been traveled.

4. Full Metric Maps: Object locations are are specified in a fixed coordinate system.

Metric information can be recovered about any objects in the map.

Given Lee’s description, one can immediately begin to conceptualize possible representa-

tion schemes. ‘Recognizable locations’ could be implemented using a probabilistic model of

observations over states—given the readings from sensors A, B, and C, what is the prob-

ability that the robot is at location X? ‘Topological Maps’ might take this a step further

by representing the environment as a connected graph. The robot’s location might even

be a hidden state X that the robot must infer given current sensor readings A, B, and

C—possibly combined with its belief that it was previously at a neighboring location Y or

Z. ‘Metric Topological Maps’ reduce uncertainty in location by allowing the robot to infer

things like ‘assuming an initial location Y , location X can be achieved by traveling d meters

southwest’. Finally, ‘Full Metric Maps’ attempt to model the complete spatial organization

of the environment.

Although maps along the entire spectrum of environmental recoverability are of theoretical

interest and have potential practical applications. There has recently been an overwhelming

tendency to use metric topological and full metric maps. This has been fueled by a number

of factors including: more accurate localization techniques (the development of the Global

Positioning System as well as more robust localization algorithms [Smith et al., 1986,Durrant-

Whyte and Bailey, 2006]), better computers that are capable of storing larger and more

detailed maps, more accurate range sensors (lidar and stereo vision), and recent developments

in planning algorithms that utilize these types of maps.

Other terms for environmental models include state space for a discrete model of the world,

and configuration space or C-space for a continuous state model of the world. Note that

the term ‘C-space’ has connotations differing from those of a geometric map. Traditionally,

C-space refers to a model that is embedded in a coordinate space associated with a system’s

degrees-of-freedom, while a map is embedded in a coordinate space associated with the

environment. In other words, a C-space is defined by all valid positions of the robot within

the (geometric) model of the world, while a map only contains the latter. In practice, a

system may simultaneously use both a map and a C-space, possibly deriving one from the

other.

1.2.1 Map Features

A single piece of environmental information stored in the representation is called a feature.

Features can be explicit (i.e. terrain height, color, temperature) or implicit (i.e. map coordi-

nates). When multiple features are associated with the same piece of the environment, the

set of features is collectively called a feature vector.

1.2.2 Map Scope

Maps may be supplied to the system a priori or created on-line. They may be static or

updated with new information as the robot explores the environment. Due to the physical

limitations of a system, a map is necessarily limited in size and/or detail. Therefore, any

map must decide how much of the environment to represent. Common approaches involve:

1. Modeling only the subset of the environment that is currently relevant to the robot’s

task (assuming this can be determined).

2. Modeling only the subset of environment within a given range of the robot.

3. Expanding the map on-line to reflect all information the robot has accumulated.

4. Modeling different parts of the environment at different levels of detail.

5. Combinations of different methods.

Obviously, there are trade-offs between the various approaches. For instance, increasing map

size with exploration may eventually overload a system’s storage space, while only modeling

a subset of the environment may leave a robot vulnerable to myopic behavior. As with

many engineering problems, the most widely adopted solution has been to hedge one’s bets

by cobbling together various ideas into a hybrid system.

I am personally fond of the ‘local vs. global’ organization; where two separate representations

are used in parallel. A global representation remembers everything the robot has experienced

at a relatively coarse resolution, while a local representation models the environment in the

immediate vicinity of the robot at a higher resolution (note that a similar effect can be

achieved with a single multi-resolution representation). This organization provides the robot

with detailed information about its current surroundings, yet retains enough information

about the world to perform long-term planning (e.g. to calculate a coarse path all the way

to the goal). This framework assumes the system is able to perform sufficient long-term

planning in the coarse resolution of the global representation, and also that it will not

exceed the system’s storage capabilities during the mission.

1.2.3 Map Coordinate Spaces

When a designer chooses to use a metric representation, they must also decide what coor-

dinate space to use for the map and/or C-space. In the case of a metric topological map,

this amounts to defining the connectivity descriptions that explain how different locations

are related. Obvious map choices include 2D and 3D Cartesian coordinate systems—which

are commonly used for simple rovers. C-spaces may include roll, pitch, yaw, etc. in addition

to position dimensions. Manipulators typically use high dimensional configuration spaces

with one dimension per degree-of-freedom. An alternative representation option is to use

the native coordinate space of a sensor. This is commonly done with image sensors, be-

cause sensor data is captured in a preexisting and meaningful organization (complete with

a coordinate space). Finally, it may be useful to create a unique coordinate space that is

tailored to the environment and/or problem domain of the robot. Stanford, the team that

won DARPA’s second Grand Challenge chose to use a distance-from-road-center coordinate

system because the robot’s task was to travel along desert roads for which GPS coordinates

were provided [Thrun et al., 2006]. Similarly, the Jet Propulsion Lab’s LAGR2 team designed

a hyperbolic map to account for camera prospective (i.e. the increase in ground-surface that

is captured by pixels approaching the horizon line) [Bajracharya et al., 2008].

1.2.4 Representation: Map vs. C-space

As stated earlier, a map of the world is not necessarily equivalent to the C-space in which

planning is achieved. Some planning algorithms require a method of transforming the former

into the latter. I will not go into great detail on this topic, but background discussion is

necessary.

Systems that plan through a C-space often maintain a separate full metric map of the world

from which they can construct portions of the C-space as required [LaValle, 2006]. If a full

metric map is used, then the designer must choose how to store information in the map. One

solution is to use a polygon model of the world (e.g. a CAD3 model), where the robot and

obstacles are defined by sets of points, lines, polygons, and polytopes. This has the advantage

of being able to exactly model any environment and/or robot that can be described as a

2DARPA’s Learning Applied to Ground Robotics
3computer aided drafting

combination of the aforementioned primitives—and can be used to approximately model

any environment/robot. Given a polygon-based map, points in the C-space are defined as

‘obstacle’ if they represent robot positions in the map that overlap or collide with obstacle

positions in the map.

Often it is computationally complex to maintain a full explicit geometric map of the world.

In these cases an implicit model of the environment is utilized—for instance, a black-box

function that returns whether or not a proposed point in C-space is free or obstacle. Implicit

models are also used when the dimensionality of the configuration space is too large to

explicitly construct or efficiently search. Conversely, if an implicit model of the world is

used, then the configuration space cannot be explicitly constructed. It can, however, be

sampled to within an arbitrarily small resolution. Algorithms that maintain a sampled view

of the configuration space are called sample based methods, and are one of the more common

representations used for robots with many degrees of freedom.

When sample based methods are used, it is common to represent the C-space as a connected

graph. Each sample represents a state (or graph node), and edges indicate what transitions

between states are possible. Non-obstacle states are linked with edges when they are closer

to each other than to any obstacle state. Sampling continues until the graph contains the

start and goal states and is connected, or until a predetermined cut-off resolution has been

reached. The output of this process is a discrete state-space model that can be used for path

planning with one of the algorithms described in section 1.5.

Another common solution is to divide the state-space into multiple non-overlapping regions or

cells, and then store information about each region separately. A list of points is maintained

describing cell boundaries, and all points within a cell are assumed to have properties defined

by that region’s features. This can be advantageous if the state space can be broken into

regions that ‘make sense’ with respect to the real world (e.g. a map containing cells for

‘lake,’ ‘field,’ ‘road,’ etc.). It is also useful when more information is required about a

particular point than whether it represents an obstacle or not (e.g. other features exist such

as elevation, color, etc.). Note that this kind of information may be provided a priori and/or

modified/learned on-line via on-board robot sensors. A similar approach, called an occupancy

grid, involves a discretization of the map into uniform grids organized into rows and columns.

This provides the practical advantage of being able to store each feature set in an array that

robot

obstacles

Figure 1: Left: a configuration space with robot and obstacles. Center: the STAR algorithm

[Lozano-Perez, 1983] is used to expand obstacles by the size of the robot. Right: a reduced

visibility graph is created. The robot is assumed to move by translation; therefore, the

C-space has 2 Degrees of freedom.

has the same structure as the map. It also facilitates spatial transformations between sensor-

space and map-space. If a map is composed of cells or grids, then the relationship between

cells/grids can be used to construct a graph for the purposes of planning. For these reasons,

cell and grid maps are commonly used in practice.

When the configuration space can be modeled explicitly in continuous space, and the di-

mensionality of the C-space is small, then combinatorial methods can be used to find the

minimum number of states necessary to describe an optimal ‘road-map’ of the shortest paths

between any two C-space points (see Figure 1) [Latombe, 1999]. combinatorial methods be-

come computationally infeasible in more complex spaces because of exponential runtime

complexity in the number of C-space dimensions. Note that, as with the other ‘continuous

methods’ described above, the problem is eventually reduced to a discrete state-space graph.

1.3 Planning Methods that are not Path-Planning

The main point of this paper is to examine how machine learning is used in conjunction with

a particular planning discipline called path-planning. Path-planning algorithms approach the

planning problem by attempting to find a sequence of actions that, based on the represen-

tation, are likely to move the robot from its current configuration to a goal configuration.

Path-planning is not the only planning framework available to a designer, and it is often used

alongside other methods. Because a single planning technique is seldom used alone, path-

θ1

θ2

θ3

X

Y

Figure 2: A mechanical arm with gripper at location X is told to move the gripper along

the path (dashed line) to location Y . Inverse kinematics is used to calculate the arm angle

functions θ1, θ2, and θ3 that accomplish this. Note that the system is under-determined, so

there are multiple solutions.

planning is sometimes confused with other planning methods. Therefore, before discussing

what path-planning is, it is helpful to outline what path planning is not.

1.3.1 Feedback Control

Feedback control or closed loop control is a branch of control theory that deals with regulating

a system based on both the desired state of the system and its current state [Hellerstein et al.,

2004]. In robotics, feedback control is used as the final layer of logic between a servo/motor

and the rest of the system. Feedback control is responsible for regulating things like speed

and heading, and can be implemented in either hardware or software. Feedback control

decides things like ‘how much power should be given to the motors, in order to achieve a

particular speed or position.’ It does not make higher-level decisions such as ‘what speed or

position should be achieved.’

1.3.2 Inverse Kinematics

Inverse Kinematics is the planning problem concerned with how various articulated robot

parts must work together to position a subset of the robot in a desired way [Featherstone,

2007]. For example, consider a manipulator arm with three joints and a gripper located at

the end, Figure 2. The gripper is currently at location X, but is told to move to location

Y along a specific path. Inverse kinematics is used to determine the joint angles of the arm

that will result in the gripper following the desired path. Inverse Kinematics assumes that

the gripper path is provided a priori, and does not violate the constraints of the manipulator

arm. To summarize, inverse kinematics does not calculate the desired path of the gripper;

however, it is responsible for determining how to move the rest of the robot so the gripper

follows the path.

The related problem of kinematics describes the state of a particular subset of the robot (e.g.

‘location of gripper’) as a function of joint angles and other degrees of freedom. Kinematics

can be used with a map or C-space to calculate the manifold of valid robot positions within

the C-space. This manifold may then be used by a path-planning algorithm to find a gripper

path that respects the assumptions required by inverse kinematics.

1.3.3 Trajectory-Planning

Trajectory-Planning is the problem of extending path-planning and inverse kinematic solu-

tions to account for the passage of time [LaValle, 2006]. While path-planning calculates a

path between two locations in the representation, trajectory-planning determines how the

robot will move along that path with respect to time. For instance, acceleration and ve-

locity functions may be calculated with respect to each degree-of-freedom. Considering the

mechanical arm example of the previous section, trajectory-planning could be used in con-

junction with inverse kinematics to calculate functions of each joint angle with respect to

time. Trajectory-planning may also consider additional factors to those imposed by the path.

For example, constraints may be placed on physical quantities such as momentum and force

that cannot be expressed in a path.

In the literature, the term motion-planning is used as a synonym for both path-planning,

trajectory-planning, and a related field of control theory [Lee, 1996, LaValle, 2006]. In or-

der to avoid confusion, I will avoid using the term ‘motion-planning,’ and instead use the

terms ‘path-planning’ and ‘trajectory-planning’ to differentiate between these ideas. To sum-

marize, trajectory-planning is closely related to—but distinct from—path-planning because

trajectory-planning considers time and path-planning does not.

sensing representation

planning

model-based planning

path-planning trajectory-planning

meta-sensor

reactive planning

feedback control

inverse kinematics

actuation

Figure 3: The components of a theoretical robotic system.

1.4 Path-Planning: General Considerations

Path-planning is the specific problem of finding a sequence of actions that will cause a robot

to achieve a goal state, given its current state [LaValle, 2006]. The sequence is created based

on the information stored in the representation, and is native to that frame of reference. It

may consist of discrete or continuous elements, such as point coordinates or curves, respec-

tively. In other words, path-planning finds a path that travels through the representation.

A key assumption is that this can be translated into the real world. For example, a path

through a scale Cartesian map of the world might consist of a list of map coordinates. As-

suming the map accurately models the environment, this path can be translated into the

real world using a simple projection.

It is worth reiterating that path-planning is only one part of the entire planning subsystem.

Figure 3 illustrates how path-planning is related to the the other planning methods outlined

in section 1.3. Note that path-planning is the planning component most closely tied to the

representation subsystem. Decisions made in the representation can affect the output of

the path-planning component as much and often even more than the specific path-planning

algorithm used. The reason being that many modern path-planning algorithms provide a

solution to a particular world model that is optimal with respect to a set of constraints—or

at least approximates optimality in well defined ways. Thus, many different path-planning

algorithms may produce paths through a specific environmental model that are similar4. On

the other hand, changing the environmental model itself can produce more drastic differences

4I have not defined any metric by which to gauge path similarity. In the context of this discussion, let ‘similar’
mean that the average human would be unable to distinguish between the robotic behavior resulting from either
path.

in behavior.

1.4.1 General Considerations: Assumptions

General assumptions made by path-planning algorithms beyond the existence of the repre-

sentation include: localization, accuracy, and goal knowledge. The localization assumption

implies that the location of the robot vs. the environment is known and can be expressed in

terms of the representation. Often the location is not known with complete certainty, but

is divided among a set of possible locations. All information provided to the robot a priori

or accumulated during its mission is assumed to be accurate to within a factor of error. In

other words, the extent of inaccuracies in the representation are bounded, and can either

be ignored or compensated for by the planning system. Finally, the system assumes that a

mission goal exists and can be expressed within the framework of the representation.

1.4.2 General Considerations: Goals

A goal defines what the path-planner is supposed to achieve. The goal may be a single

objective or a set of objectives. The most common goal for a path-planning algorithm, and

the one addressed in the remainder of this paper, is finding a path through the C-space from

the robot’s current position to another specific goal position. Note, this is by no means the

only goal that a path-planner might expect. Examples of other objectives include: observing

as much of the environment as possible (mapping), moving from one location to another while

avoiding other agents (clandestine movement), following another agent (surveillance), and

visiting a set of locations while simultaneously attempting to minimize movement (traveling

salesman problem).

1.4.3 General Considerations: Completeness

A path-planning (or other) algorithm is called complete if it both (1) is guaranteed to find

a solution in a finite amount of time when a solution exists, and (2) reports failure when a

solution does not exist. Resolution completeness means that an algorithm will find a solution

in finite time if one exits, but may run forever if a solution does not exist5. Probabilistic
5The name ‘resolution completeness’ comes from algorithms that attempt to build a graph of the world by randomly

sampling the C-space. Assuming a solution does not exist, these algorithms are guaranteed to terminate only when
the C-space is fixed in size and sample points are limited to a finite resolution.

completeness applies to random sampling algorithms. It means that given enough samples,

the probability a solution is found approaches 1. Note, however, this does not guarantee the

algorithm will find a solution in finite time [LaValle, 2006].

1.5 Path-Planning: Algorithms

This section is devoted to path planning-algorithms that do not use machine learning. In

order to find a path without resulting to trial-and-error, the representation must contain

connectivity information about the different place it represents. This means that a ‘recog-

nizable locations’ type of map cannot be used. On the other hand, topological maps, metric

topological maps, and full metric maps are all valid.

1.5.1 Generic Graph-Search Algorithm

The first family of path-planning algorithms I will discuss are called graph-search algorithms.

As the name implies, these algorithms perform path search through a graph. Graph search

algorithms can be used directly on topological and metric topological maps, because these

representations are essentially graphs. Assuming the world is deterministic (i.e. the same

action always produces the same result, given a particular world state), many graph search

algorithms will find an optimal path with respect to the representation. An entire subset of

graph-search algorithms have been developed for the case when sampling-based methods or

combinatorial methods are used in the representation.

Let vi represent an arbitrary vertex in a graph and let V represent a set of arbitrary vertices.

Each node has a unique identifier i. Two vertices vi and vj are the same if i = j and different

if i 6= j. vgoal is a set of goal vertices that represent acceptable termination states for the

path, and vstart is a set of possible starting locations. G is the set of all vertices in the

graph. Let ei,j represent an edge that goes from node vi to node vj . Edges between nodes

can either be directed ei,j 6= ej,i or undirected ei,j = ej,i. Most graph-serach algorithms do

not specifically require an edge to be directed or undirected, but will only traverse directed

edges in one direction (from node vi to node vj). Without loss of generality, undirected edges

can be though of as two directed edges, one going in either direction (the undirected edge

ei,j accomplishes the same connectivity as the two directed edges ei,j and ej,i). Therefore,

for simplicity, I shall assume that all edges are directed.

Let ei be the set of all edges that leave vertex vi. That is ei,j ∈ ei if and only if ei,j exists.

Node vj is considered a neighbor of node vi if ei,j ∈ ei. Finally, let E represent the set of

all edges in the graph. Graph-search algorithms assume the existence of V, E, vgoal, and

vstart.

During graph-search, an algorithm starts at vstart and attempts to find a path to vgoal, or

vise versa, by exploring from node-to-node via edges. It is known as forward search when the

search is conducted from vstart to vgoal, and backward search when the search is conducted

from vgoal to vstart. Bidirectional search starts at both vgoal and vstart and attempts to

connect the two searches somewhere in the middle. Multi-directional search starts at vgoal

and vstart as well as other random or intuitive locations and attempts to link the searches

together in such a way that a path is found between vstart and vgoal. When an optimal6

forward/backward search algorithm is used to create a bidirectional search algorithm, the

resulting algorithm is also optimal. However, this does not extend to multi-directional search.

A node is said to be unexpanded if it has not yet been reached by the search algorithm. A

node is alive or open if it has been reached, but has at least one neighbor that has not yet

been reached (forward search), or is the neighbor of one node that has not yet been reached

(backward search). A node is called expanded, closed, or dead when it has been reached by

the search and so have all of its neighbors (forward searh), or so have all of the nodes it is a

neighbor of (backward search). In other words, in forward search node vi is open/closed if all

vj have not/have been reached such that ei,j ∈ E. In backward search node vj is open/closed

when all vi have not/have been reached such that ei,j ∈ E.

As the search progresses, a list is maintained of the nodes that are currently open. This is

called the open-list. Note that possible progress away from closed nodes has already been

made, and we do not yet know how to get to unexpanded nodes. Therefore, the open-list

contains the particular subset of nodes from which further progress is possible. At each step

of a forward search, all unexpanded neighbors vj of a particular node on the open-list vi are

added to the open-list, and vi is removed from the open-list. Backward search is similar,

except that all nodes vi for which the open-list node vj is a neighbor are added to the open-

6i.e. an algorithm that is guaranteed to find an optimal path with respect to some metric.

list and vj is removed from the open-list. Search successfully terminates when a goal/start

node is expanded (in forward/backward search). Search is unsuccessfully terminated when

the open-list is exhausted—implying a path between vstart and vgoal does not exist.

The relative order in which nodes are expanded can be used to create a tree-representation

of the graph-search. This is called a search-tree. In forward or backward search the root(s)

of the tree are at vstart or vgoal, respectively. In practice, it is common to use back-pointers

to preserve the structure of the search-tree by creating a back-pointer from each node vj

to the earlier node vi from which vj was discovered7. In bidirectional search, there is a

separate search-tree for both the forward and backward directions of the search, and in

multi-directional search each search has its own tree. In bidirectional and multi-directional

search, two trees are joined when a particular node is included in both search-trees. For

the remainder of this paper I shall assume that search occurs in the backward direction8. If

this is done, then a path can easily be found from vstart to vgoal by following search-tree

back-pointers after a successful termination.

Algorithm 1 Graph-Search

Require: G, E, vstart, vgoal

1: add vgoal to the open-list
2: while the open-list is not empty do
3: remove a node from the open-list and call it vj

4: if vj ∈ vstart then
5: return SUCCESS
6: for all vi such that ei,j ∈ E do
7: if vi is unexpanded then
8: add vi to the open-list
9: set back-pointer from vi to vj

10: return FAILURE

Algorithm 1 displays pseudo-code for a generic graph-search algorithm. The algorithm starts

by adding the goal nodes to the open-list (line 1). Next, while there are still nodes in the

open-list, a node vj is chosen to be expanded (line 3). If vj is a start node, then the algorithm

terminates successfully (lines 4-5). Otherwise, vj is closed by adding all of the nodes vi for

which vj is a neighbor to the open-list (line 8). A back-pointer is created from vi to vj (line

9) so that the path can be extracted from the search-tree upon successful termination. If the

list becomes empty then there are no possible paths from vstart to vgoal, and the algorithm

7Depending on the algorithm, back-pointers may be modified to account for better ways of navigating the envi-
ronment, as they are discovered.

8This is slightly confusing because the search algorithm begins at vgoal and attempts to get to vstart

returns failure at line 10.

Once the search-tree has been constructed from vgoal to vstart, the actual path is extracted

in a post-processing step. The nodes and edges that make up the path represent states in

the world and the relationships between them. Depending on the specific representation

used, the path might be created from information stored in the nodes, edges, or both. For

example, if nodes are associated with coordinates in a C-space, the path might be described as

a ‘bread-crumb’ trail of the coordinates associated with path nodes. If a discrete topological

map is used, edges may contain prior knowledge about how to transition between the states

they connect.

Note that the method of choosing vj from the open-list on line 3 has not been specified.

This is the heart of any graph search algorithm. The next two subsections describe naive

methods of choosing vj that are well known. Subsequent subsections cover more complicated

techniques.

1.5.2 Depth-First Search

As the name implies, depth-first search performs graph-search by building the search-tree as

deep as possible, as fast as possible [Cormen et al., 2001]. This is accomplished by making

the open-list into a stack, and always expanding the top node of the stack. Pseudo-code for

depth-first search is displayed in Algorithm-2.

Algorithm 2 Depth-First Search

Require: G, E, vstart, vgoal

1: for all vgoal ∈ vgoal do
2: push-top(vgoal,open-list)
3: while the open-list is not empty do
4: vj = pop-top(open-list)
5: if vj ∈ vstart then
6: return SUCCESS
7: for all vi such that ei,j ∈ E do
8: if vi is unexpanded then
9: push-top(vi, open-list)

10: set back-pointer from vi to vj

11: return FAILURE

The functions push-top() and pop-top() place a node on the top of the stack and remove

a node from the top of the stack, respectively. Given a finite graph, depth-first search is

complete. However, in a countably infinite graph, depth-first search is not complete and may

not even find a solution when one exists. In practice, depth-first search is used when vstart

contains many nodes, and all of them are expected to be distant from vgoal.

1.5.3 Breadth-First Search

Breath-first search is similar to depth-first search, except it attempts to make the search-

tree as broad as possible, as quickly as possible [Cormen et al., 2001]. This is accomplished

by changing the open-list into a queue, adding open nodes to the back of the queue, and

expanding nodes off the front of the queue. This way, nodes are expanded in the same order

they are discovered. Pseudo-code for breadth-first search is displayed in Algorithm-3. The

function push-back() adds a node to the back of the queue.

Algorithm 3 Breadth-First Search

Require: G, E, vstart, vgoal

1: for all vgoal ∈ vgoal do
2: push-back(vgoal,open-list)
3: while the open-list is not empty do
4: vj = pop-top(open-list)
5: if vj ∈ vstart then
6: return SUCCESS
7: for all vi such that ei,j ∈ E do
8: if vi is unexpanded then
9: push-back(vi, open-list)

10: set back-pointer from vi to vj

11: return FAILURE

Breadth-First Search is complete in a finite graph. It is incomplete in a countably infinite

graph; however, it will find a solution if one exists (i.e. is resolution complete). Breadth-first

search is more methodical than depth-first search and is usually more useful when vstart

only includes a few nodes. However, breadth-first search may be inefficient in large graphs

and/or high dimensional spaces.

1.5.4 Best-First Search

Often nodes and/or edges are associated with values or cost that can be used to determine

their relative importance with respect to the path-search problem [LaValle, 2006]. Using

cost to make informed decisions about search-tree growth is known as best-first search. In

general, best-first search is not optimal; however, it is possible to create algorithms that are.

Let cj be the cost associated with node vj . The specific calculation of cj is dependent on

the task the robot is trying to accomplish and the information stored by representation

subsystem. As an example, consider the special case where each node knows a priori both

the distance from itself to its neighbors and the distance through the graph from vstart

to itself. Let di,j represent the distance from node vi to vj and let dstart,i represent the

minimum distance from vstart to vi. It is possible make an informed search-tree expansion

at each step—the next node to be expanded is the neighbor with the minimum cost cj where

cost is the sum cj = dstart,i+di,j. This results in a much quicker search than either depth-first

or breadth-first search.

Algorithm 4 Standard Best-First Search

Require: G, E, vstart, vgoal

1: for all vgoal ∈ vgoal do
2: insert(vgoal,cost(vgoal),open-list)
3: while the open-list is not empty do
4: vj = get-best(open-list)
5: if vj ∈ vstart then
6: return SUCCESS
7: for all vi such that ei,j ∈ E do
8: if vi is unexpanded then
9: insert(vi,cost(vi),open-list)

10: set back-pointer from vi to vj

11: return FAILURE

Algorithm 5 Greedy Best-First Search

Require: G, E, vstart, vgoal

1: vj = vgoal ∈ vgoal

2: while vj 6= vstart do
3: cbest = ∞
4: for all vi such that ei,j ∈ E do
5: if cost(vi) ≤ cbest then
6: vbest = vi

7: cbest = cost(vi)
8: set back-pointer from vbest to vj

9: vj = vbest

10: return SUCCESS

In my opinion, there are two general frameworks for best-first search: standard best-first

search and greedy best-first search. Standard best-first search algorithms store the open-

list in a priority heap so they can quickly find the best node to expand. Greedy best-first

search algorithms may not store an open-list, opting instead to use only the information

locally available at the current node. This minimizes storage requirements and eliminates

heap operations, but sacrifices global information. Pseudo-code for standard and greedy

best-first search algorithms is displayed in Algorithms 4 and 5, respectively. The function

cost(vj) returns the cost value cj . The function insert(vj ,cj,open-list) inserts node vj into

the open-list with the priority value cj . The function get-best(open-list) returns the node in

the open-list with the minimum cost value.

Given the contrived example described above, greedy best-first search should be used over

standard best-first search whenever vgoal = vgoal. This is because a globally optimal solution

can be found by making locally optimal decisions, assuming there is only one place the

search can begin. The runtime is constant in the connectivity of the graph multiplied by the

maximum number of edges in a minimum cost path.

In other circumstances, the standard framework may provide advantages over the greedy

framework. It is important to evaluate whether or not an algorithm is complete when using

either type of best-first search. Greedy algorithms are particularly susceptible to getting

stuck in infinite loops when the cost function is poorly defined. The next section provides an

example of a standard best-first search strategy that can find less costly paths than greedy

best-first search.

1.5.5 Dijkstra’s Algorithm

Dijkstra’s algorithm [Dijkstra, 1959] is one of the earliest discovered optimal best-first search

algorithms. Dijkstra’s algorithm assumes that distances di,j are known for all edges ei,j. Cost

ci is defined as the minimum distance required to reach the goal from a particular node vi.

When Dijkstra’s algorithm is run in the forward direction, cost is frequently called cost-

to-come because it represents the minimum cost required to come to vi from vstart. This

paper deals with the backward version of Dijkstra’s algorithm, in which case cost is called

cost-to-go because it represents the cost of going from node vi to vgoal.

Although each node only knows the distance between itself and its neighbors, we can calculate

ci for all nodes during the search by realizing that ci = minj di,j + cj , and defining cgoal = 0.

Pseudo-code is displayed in Algorithm 6. The function update(vi,ci,open-list) inserts vi into

the open-list (priority heap) with the priority value ci, if it is not already there. Otherwise, it

updates the position of vi in the queue to reflect the new priority value ci. This is necessary

because the algorithm may find a cheaper way to reach an open node during exploration.

Algorithm 6 Dijkstra’s

Require: G, E, vstart, vgoal

1: for all vgoal ∈ vgoal do
2: insert(vgoal,0,open-list)
3: while the open-list is not empty do
4: vj = get-best(open-list)
5: if vj ∈ vstart then
6: return SUCCESS
7: for all vi such that ei,j ∈ E do
8: if vi is unexpanded or ci > di,j + cj then
9: ci = di,j + cj

10: update(vi,ci,open-list)
11: set back-pointer from vi to vj

12: return FAILURE

It is easy to see that this creates a search-tree that is optimal with respect to cost. Nodes are

expanded based on their cost-to-go, and the node in the heap with minimum cost-to-go is

always expanded. Also, open nodes in the heap are reordered (and the search-tree adjusted)

whenever a cheaper path to the goal is found through a recently expanded neighbor (lines

8 to 11). Dijkstra’s Algorithm is complete for finite graphs and resolution complete for

countably infinite graphs. Note that if di,j = 0 for all i and j then Dijkstra’s algorithm

degenerates into breadth-first search.

1.5.6 A* Algorithm

Often a heuristic function can be used to provide an estimate of the cost of traveling between

two nodes. Let the heuristic estimate of cost between nodes vi and vj be denoted hi,j. The

heuristic estimate of cost from vstart to vj is denoted hstart,j. The A* search algorithm [Hart

et al., 1968] performs best-first search where cost is defined as:

ci = hstart,i + di,goal = hstart,i + min
j

(di,j + dj,goal)

where vj is a neighbor of vi. That is, the estimated cost of traveling from the vstart to node

vj plus the actual cost of traveling from vj to vi plus the actual minimum cost of traveling

through the graph from vi to the vgoal. Pseudo-code for the A* algorithm is displayed in

Algorithm 7.

Algorithm 7 A*

Require: G, E, vstart, vgoal

1: for all vi ∈ vgoal do
2: insert(vi,hstart,i,open-list)
3: while the open-list is not empty do
4: vj = get-best(open-list)
5: if vj ∈ vstart then
6: return SUCCESS
7: for all vi such that ei,j ∈ E do
8: if vi is unexpanded or di,goal > di,j + dj,goal then
9: di,goal = di,j + dj,goal

10: ci = hstart,i + di,goal

11: update(vi,ci,open-list)
12: set back-pointer from vi to vj

13: return FAILURE

If hi,j ≤ di,j then the heuristic is said to be admissible or optimistic. When A* uses an

admissible heuristic, the path from the start to the goal is guaranteed to be optimal with

respect to cost. This is because, as long as the heuristic never overestimates the true cost,

the algorithm will never miss an opportunity to find a less expensive path through a node

on the open-list9. As with other best-first search algorithms, A* modifies the search-tree

to reflect better paths through nodes on the open-list as they are discovered (lines 8-12).

A* is complete in a finite graph but may or may not be resolution complete in a countably

infinite graph, depending on the heuristic that is used. Given an admissible heuristic, A* is

resolution complete in a countably infinite graph. If the heuristic is inadmissible, then there

is not enough information to determine whether or not the algorithm is resolution complete

without examining the specific properties of the heuristic function. Note that if hi,j = 0 for

all i and j then A* degenerates into Dijkstra’s algorithm.

The A* algorithm has a long history of being used in robotic path planning. A common

application is in the context of mobile rovers planning through an occupancy grid scale-model

of the world. In this case, distance can be defined as the L2-norm between points (assuming

grids are spaced unit length apart, all horizontal and vertical neighbors are 1 unit apart, all

diagonal neighbors in 2D are
√

2 units apart, and all diagonal neighbors in 3D are
√

3 units

apart). The Euclidean distance between grid centers can be used as an admissible heuristic.

9Conversely, if the heuristic overestimated the true cost of travel, than potentially good paths would not be
explored, and the algorithm might not find the least expensive path.

1.5.7 Anytime Algorithms

When an algorithm name includes the term anytime, it implies that the algorithm quickly

finds a sub-optimal solution and then works to refine that solution while time permits [Hansen

and Zhou, 2007]. Given enough time for refinement, anytime algorithms eventually converge

to an optimal solution. Anytime algorithms are useful for real-time applications, where

performing any valid yet sub-optimal action is considered better than performing an invalid

action or no action at all. For instance, when driving a car down a highway, most people are

willing to settle for a solution that keeps the car on the road and free from collisions—even

if the solution is slightly longer than optimal. There are a couple of general frameworks for

anytime algorithms I will discuss in the context of A*. I shall refer to them as Iterative

Anytime Methods and Refinement Anytime Methods, although these terms are not used in

the literature.

Algorithm 8 Iterative Anytime A*

Require: G, E, vstart, vgoal, ǫ, ∆ǫ

1: while time remains do
2: initailize(open-list)
3: for all vi ∈ vgoal do
4: insert(vi,ǫhstart,i,open-list)
5: while the open-list is not empty and time remains do
6: vj = get-best(open-list)
7: if vj ∈ vstart then
8: save the path from vj to vgoal

9: break
10: for all vi such that ei,j ∈ E do
11: if vi is unexpanded for this value of ǫ or di,goal > di,j + dj,goal then
12: di,goal = di,j + dj,goal

13: c′i = ǫhstart,i + di,goal

14: update(vi,c
′
i,open-list)

15: set back-pointer from vi to vj

16: if vj ∈ vstart then
17: ǫ = ǫ−∆ǫ
18: if ǫ < 1 then
19: return SUCCESS
20: else
21: break
22: if a path has been saved then
23: return SUCCESS
24: return FAILURE

The first idea is to quickly perform a search that will find a suboptimal solution in the

alloted amount of time, and then continue to perform increasingly more optimal searches

as time permits. This can be accomplished with A* by weighting the admissible heuristic

hi,j by a factor ǫ ≥ 1 to get ǫhi,j . This causes the heuristic to over-estimate the cost of

traveling between two nodes by at most ǫ. The overall effect is that solutions found using

ǫhi,j are at most ǫ times more expensive than the optimal solution [Davis et al., 1988]. Larger

values for ǫ cause the search to terminate more quickly because fewer nodes are expanded

(because the estimated cost-to-come values of nodes are artificially inflated). This may not

appear intuitive, however, the time savings can be significant—especially in graphs with a

high degree of connectivity.

Iterative Anytime A* performs one search, saves the result, and then decreases ǫ by ∆ǫ and

repeats the process. It is assumed the initial value of ǫ = a(∆ǫ) + 1 for some constant a,

so that ǫ will eventually have a value of 1 (in which case an optimal path will be found).

Let c′i represent the ‘minimum’ cost to the goal as determined when ǫ 6= 1. Explicitly,

c′i = ǫhstart,i + di,goal.

Pseudo-code for Iterative Anytime A* is given in Algorithm 8. The function initialize()

removes all elements from the open-list. Lines 3 to 15 represent one execution of A*. On

lines 8 and 16-17, the algorithm saves a path and decreases ǫ, assuming a path to the start has

been found. On line 18 a check is performed to see if the new epsilon is less than 1. The final

iteration of A* is optimal, given the assumption that the final value of ǫ is 1, so the algorithm

terminates successfully on line 19. Once time expires, the algorithm terminates successfully

if at least one path has been found, otherwise the algorithm terminates unsuccessfully.

Refinement anytime methods operate by first finding a sub-optimal solution, and then using

the remaining search time to gradually improve that solution. After the search-tree reaches

the start node for a particular value of ǫ in Iterative Anytime A* (Algorithm 8, line 7), the

open-list is still populated with nodes that may well yield less costly paths. However, these

nodes have been inserted with a priority value based on a pessimistic ǫ. We can modify

Algorithm 8 into a refinement anytime framework by decrementing ǫ and then proceeding as

normal without calling initialize(open-list). Further, the cost of the current best solution can

be used to focus the search. This is accomplished by removing nodes from the open-list that

have (admissible) values of ci that are greater than the cost of the current best solution10.

This works because ci will not overestimate the cost of traveling from vstart to vgoal through

10Note that this requires the algorithm to store both ci and c′i.

vi; and therefore, these nodes cannot possibly lead to better solutions than the best already

found.

As back-pointers are added to the search-tree and modified within it, they always reflect the

least costly way back to the goal discovered so far. New values of ǫ may allow less costly

paths to be discovered through old nodes that have already been expanded. These nodes

are re-inserted into the open-list, so that the resulting reductions in cost can be propagated

through the search-tree.

Algorithm 9 Refinement Anytime A*

Require: G, E, vstart, vgoal, ǫ, ∆ǫ

1: for all vi ∈ vgoal do
2: insert(vi,ǫhstart,i,open-list)
3: B =∞
4: while time remains and the open-list is not empty do
5: vj = get-best(open-list)
6: if vj ∈ vstart then
7: if ǫ > 1 then
8: ǫ = ǫ−∆ǫ
9: B = dstart

10: continue
11: else if cj ≥ B then
12: continue
13: for all vi such that ei,j ∈ E do
14: if vi is unexpanded or di,goal > di,j + dj,goal then
15: di,goal = di,j + dj,goal

16: c′i = ǫhstart,i + di,goal

17: ci = hstart,i + di,goal

18: update(vi,c
′
i,open-list)

19: set back-pointer from vi to vj

20: if B 6=∞ then
21: return SUCCESS
22: return FAILURE

Pseudo-code for Refinement Anytime A* is given in Algorithm 9. On lines 7 and 8 the value

of ǫ is decreased every time a less expensive path is found to the goal. Note that using this

condition to decrease ǫ is completely arbitrary, and many other methods could be used (for

instance, ǫ could be decreased on a predetermined time schedule, assuming at least one path

has been found). Further, lines 7 and 8 could be completely removed without affecting the

algorithm’s eventual convergence to the optimal solution. The advantage of keeping lines

7 and 8 is that reductions in path cost tend to propagate further through the search-tree

before other possibilities are explored. Although, it is not possible to determine for sure

which option will be more advantageous for a particular problem.

One detail I have not covered is how the initial value of ǫ and the step size ∆ǫ should be

chosen. Unfortunately, there is no standard method, and this problem is largely ignored

in the literature. Typical assumption statements read “...the [non-admissible heuristic] is

used to select nodes for expansion in an order that allows good, but possibly suboptimal,

solutions to be found quickly” [Hansen and Zhou, 2007]. Regardless, Both types of Anytime

algorithms have been extensively used for real-time applications, and have been built on top

of other algorithms besides A*.

1.5.8 Lifelong A*

Lifelong A* [Likhachev and Koenig, 2001] has been developed specifically for applications

in which multiple searches need to be performed through a changing representation, but the

the start and goal locations are guaranteed to remain the same. If the number of changes

is small compared to the size of the graph11, then it is more efficient to repair the existing

search-tree than to perform an entirely new search from scratch.

Given the type of search-tree that we have been considering up to this point, a Lifelong A*

algorithm could be implemented by reinserting into the open-list all nodes with modified

edge cost or connectivity. These changes could then be propagated through the search-tree

as was done with Refinement Anytime A*. However, [Likhachev and Koenig, 2001] take a

slightly different approach because they do not explicitly store a pointer-based search-tree.

Instead, Lifelong A* implicitly models the search-tree structure by storing cost-to-go values

cj,goal at each node. When the start node is reached, a path is extracted using gradient

descent over cost-to-go values12, and ties are broken arbitrarily.

Let node vj be a neighbor of vi. The quantity rhsi is defined as follows:

rhsi = min
j

ci,j + cj,goal

and represents the minimum cost of traveling to the gaol from vi through one of its neighbors.

For the case vi = vgoal the value rhsgoal ≡ 0. As changes are made to the representation,

Lifelong A* updates rhsi if an outgoing edge of vi has been modified. Next, if rhsi 6= di,goal

11For example, the number of nodes modified between searches is less than half the size of the search-tree
12i.e. all neighbors of vi are examined to see which has the lowest cj,goal value and the path then moves to that

node.

then the cost of moving from vi to the goal is no longer accurate, so vi is inserted back

into the open-list. When rhsi 6= ci,goal the node vi is said to be inconsistent. The terms

under-consistent and over-consistent are also used to describe the cases when rhsi > ci,goal

and rhsi < ci,goal, respectively. The open-list priority heap is now sorted according to

a lexicographic ordering of two values [k1,k2]i where k1 = hstart,i + min (ci,goal, rhsi) and

k2 = min (ci,goal, rhsi). Pseudo-code for Lifelong A* is given in Algorithm 10. rhsi values

and ci,goal are initialized to ∞. The function top() returns the vertex on the top of the

open-list without removing it.

Algorithm 10 Lifelong A*

Require: G, E, vstart, vgoal

1: procedure CalculateKey(vi)
2: return [hstart,i + min (ci,goal, rhsi), min (ci,goal, rhsi)]

3: procedure UpdateVertex(vi)
4: if vi 6∈ vstart then
5: rhsi = minj ci,j + cj,goal

6: if vi ∈ open-list then
7: remove vi from the open-list
8: if (ci,goal 6= rhsi) then
9: update(vi,CalculateKey(vi),open-list)

10: procedure PerformSearch()
11: while CalculateKey(top(open-list)) < CalculateKey(vstart)

or rhsstart 6= cstart,goal do
12: vj = get-best(open-list)
13: if (cj,goal > rhsj) then
14: cj,goal = rhsj

15: for all vi such that ei,j ∈ E do
16: UpdateVertex(vi)
17: else
18: cj,goal =∞
19: UpdateVertex(vj)
20: for all vi such that ei,j ∈ E do
21: UpdateVertex(vi)

22: procedure main
23: for all vi ∈ vgoal

24: update(vi,CalculateKey(vi),open-list)
25: rhsstart = 0
26: forever
27: PerformSearch()
28: Wait for changes in edge costs
29: for all edges ei,j with changed costs do
30: update UpdateVertex(vi)

When a node vi is under-consistent, its current distance to goal value is too low and the

implicit search-tree structure may need be modified so that vi transitions to a different

neighbor (line 19). Also, nodes that used to transition to vi may be able to find a better

path through a different neighbor. This is accomplished by re-initializing vi (line 19) and

then inserting all nodes that might transition to vi onto the open-list (lines 20-21). When a

node is over-consistent, its distance to goal value is too high. In that case, the search-tree

may need to be modified so that other nodes transition to vi instead of a different neighbor.

This is accomplished by having vi adopt the rhsi value as its ci,goal value (line 14), and then

reinserting any node that can transition to vi into the open-list (lines 15-16).

Lifelong A* inherits all theoretical properties of A*. When an admissible heuristic is used,

it is optimal with respect to the graph (after a search is complete and before edge costs

change). It is complete in a finite world and resolution complete in a countably infinite

world.

1.5.9 D* Algorithm

Dynamic A* or D* is the next logical algorithmic idea after Lifelong A*. The D* algorithm

is similar to lifelong A*, except that vstart is allowed to change between searches. As in

Lifelong A*, edge costs are also allowed to change. The first version of D* was presented

in [Stentz, 1994] and then extended in [Stentz, 1995]. These versions of the algorithm rely

on the more traditional notion of explicitly updating back-pointers in the search-tree to

reflect graph changes, as opposed to the implicit search-tree used in Lifelong A*. A more

recent version called D* lite is presented in [Koenig and Likhachev, 2002] and uses the

implicit search-tree representation. As a side-note, the term ‘lite’ has since been adopted

to describe algorithms that use the implicit search-tree representation. Results in [Koenig

and Likhachev, 2002] appear to show that D* lite runs more quickly than the original D*

algorithm in practice13. As with Lifelong A*, D* and D* lite inherit the completeness and

optimality properties of the A* algorithm they are built on top of. The following discussion

is valid for both D* and D* lite; however, the pseudo-code in Algorithm 11 is for D* lite.

As previously noted, the only functional difference between Lifelong A* and D* Lite is that

the location of vstart is allowed to move in the latter. This is advantageous in robotic

13I believe the reasons for this are still poorly understood at present.

Algorithm 11 D* Lite

Require: G, E, vstart, vgoal

1: procedure CalculateKey(vi)
2: return [hstart,i + min (ci,goal, rhsi) + M, min (ci,goal, rhsi)]

3: procedure UpdateVertex(vi)
4: if vi 6∈ vstart then
5: rhsi = minj ci,j + cj,goal

6: if vi ∈ open-list then
7: remove vi from the open-list
8: if (ci,goal 6= rhsi) then
9: update(vi,CalculateKey(vi),open-list)

10: procedure PerformSearch()
11: while CalculateKey(top(open-list)) < CalculateKey(vstart)

or rhsstart 6= cstart,goal do
12: vj = get-best(open-list)
13: if (cj,goal > rhsj) then
14: cj,goal = rhsj

15: for all vi such that ei,j ∈ E do
16: UpdateVertex(vi)
17: else
18: cj,goal =∞
19: UpdateVertex(vj)
20: for all vi such that ei,j ∈ E do
21: UpdateVertex(vi)

22: procedure main
23: for all vi ∈ vgoal

24: update(vi,CalculateKey(vi),open-list)
25: M = 0
26: rhsstart = 0
27: while robot is not at the goal do
28: PerformSearch()
29: move robot to new vstart

30: M = M+ the magnitude of resulting movement cost
31: wait for changes in edge costs
32: for all edges ei,j with changed costs do
33: update UpdateVertex(vi)

applications where the robot must move through the world on it way to a goal. Recall that

the root of the search-tree is at vgoal. Also, ci,goal and rhsi reflect the minimum cost of

moving from vi to vgoal. Therefore, the structure14 of the search-tree is valid, regardless of

the location of vstart. This does not happen accidentally. Search is specifically performed in

the backward direction (i.e. from goal to start) so that the start can move without destroying

the validity of the search-tree.

14Explicit back-pointer structure in the case of D* and implicit structure in the case of D* lite.

An additional consideration must be addressed: given that the open-list is sorted using

heuristic estimated cost-to-come values, what do we do about the fact that modifying vstart

invalidates these? The solution is to redefine the heuristic estimate of cost-to-come to addi-

tionally include the cumulative cost of previous movement. Let h′
start,i be the new heuristic

cost-from-start. h′
start,i = hstart,i + M , where M is the total cumulative movement cost the

robot has incurred during its mission.

Why does this work? To answer this question, let us assume for a moment that heuristic cost-

to-come is still calculated as hstart,i. Further, let us assume that the robot has just moved

a particular distance through the word that corresponds to movement cost of d. Values of

hstart,i that had previously been used to populate the open-list are currently between d too

high and d too low. Assuming that we wish to maintain an admissible heuristic, we could

go through the entire open-list and reset each value of hstart,i to hstart,i − d. This would

ensure admissibility by guaranteeing we do not overestimate cost-to-come. This, however, is

also expensive when the heap is large. Instead, the same effect can be achieved by adding

d to new heuristic estimated cost-to-come values. This keeps the relative order of heap

key values identical to how it would be if the open-list had been exhaustively modified as

described above.

D* and D* lite have been widely adopted. In fact, I believe they have enabled a recent

revolution in the sub-field of field robotics. The reason for this is because most autonomous

field robotic systems perceive the world through sensors attached to the robot. Also, most

sensors have a finite range and, therefore, can only perceive environmental changes within

a fixed radius of the robot. Because the search-tree is rooted at the goal, any change in

edge structure or cost can only affect the part of the search-tree that is further away from

the goal than the edge where the change takes place. Therefore, as changes occur during

the course of robotic movement, only the outer-most branches of the search-tree are affected

(because of the limited range of on-board sensors) and most of the search-tree does not need

to be modified. Although D* and D* lite still require an initial search that is equally time

consuming to A*, subsequent searches happen much more quickly. In large environments, D*

can reduce the time required for on-line search by two or three orders of magnitude compared

to A*. This has allowed representations to include larger pieces of the environment and to

be modeled at a higher resolution.

Start

Goal

Start

Goal

Figure 4: Optimal paths of identical cost through uniform maps. The left and right maps

use 4- and 8-connected graphs, respectively. The solid paths are more desirable than the

dotted paths with respect to the real world.

1.5.10 Field D*

Graph-search techniques such as Dijkstra’s, A*, and D* find an optimal path with respect

to a graph representation of the world. Often this representation comes from a grid map,

and has a two dimensional 4- or 8-connected structure. Unfortunately, the graph structure

itself can lead to optimal graph paths that are sub-optimal with respect to the real world.

Movement must be broken into a combination of horizontal and vertical transitions in a

4-connected graph, while in an 8-connected graph it must be decomposed into directions

along multiples of 45 degrees.

Many (equally) optimal paths may exist with respect to the graph. For instance, given a

uniform map, a path that moves through a 4-connected (8-connected) graph horizontally

as far as possible and then vertically (diagonally) will have the same cost as a path that

alternates between vertical and horizontal (diagonal) movement—see Figure 4. The former

path is suboptimal globally, while the latter is suboptimal on the scale of a few map grids.

The local sub-optimality of the staircase-like path can be corrected locally with a simple

local planner, so the staircase-like path is more desirable in practice. However, given the

set of all optimal graph-paths, the task of finding the best with respect to the real world is

computationally infeasible. A common solution is to break cost ties by moving toward the

goal; however, this technique fails if the goal is blocked by an obstacle—see Figure 5.

Field D* [Ferguson and Stentz, 2006b] largely avoids the tie-breaking problem by operating

in the continuous domain that envelopes the 4- or 8-connected graph neighborhood. Graph

node values represent a discrete sampling over a continuous field of the costdistance (i.e.

Start Goal

Figure 5: Optimal paths of identical cost through a uniform map with an obstacle. The map

uses a 4-connected graph. The dotted path breaks ties in cost by moving toward the goal,

but the solid path is more desirable with respect to the real world.

Figure 6: Grid layout over map grids. Graph nodes and edges are black, map grids are

gray and white. Field-D* places nodes at grid corners (left), while A*, D*, and D* Lite

traditionally place nodes at grid centers (right).

cost15 integrated over distance) required to reach the goal. Field-D* operates much like

D* and D* lite, except that it calculates the costdistance-to-goal for continuous points on a

graph edge using a linear interpolation between the costdistance-to-goal values of that edge’s

two end-nodes. This allows paths to follow trajectories in the continuous domain. Assuming

that Field D* is implemented in a ‘lite’ framework, paths can be extracted from the field using

a form of gradient descent. Edges are not explicitly followed. However, the 8-conectevity

structure is used to determine the dependence relationship between node values, and also

to define the set of nodes from which continuous field values are calculated. Note that

having more than one start location may cause problems with the linear interpolation idea.

Therefore, it is assumed that there is only one starting location per search, vstart = vstart.

Unlike D* and D* Lite, graph nodes are placed at the corners of map grids instead of at

their centers (Figure 6-left vs. 6-right, respectively). An 8-connected graph structure is used

15Up to this point, I have used the terms cost and distance interchangeably. This has assumed that the represen-
tation consists only of obstacles and free terrain. In practice, it is often useful to define a difficulty metric associated
with terrain traversal (e.g. ‘mud’ or ‘hill’ may be more difficult to traverse than ‘grass’ or ‘flat,’ respectively). When
this is done, it is common practice to refer to this metric as cost. Although many algorithms directly use this kind
of cost to order the open-list priority heap, it can be slightly confusing when another quantity is used, instead.

(0, 0)

ρ1

ρ2

ρ3ρ4

ρ5

ρ6

ρ7 ρ8

vi

(n, m)
viva

vb
C

D

ρ

Figure 7: (Left) The 8 edges used to determine the costdistance-to-goal of node vi. (Right)

Edge ρ connects nodes va and vb. the costdistance-to-goal of va and vb is da,goal and db,goal,

respectively. C and D are map grids with cost cc and cd, respectively.

to define neighboring nodes; however, travel through the map is not restricted to graph

edges. The algorithm for Field D* is basically identical to D* lite (Algorithm 11), except

that costdistance di,j is used instead of cost ci,j and linear interpolation is used to determine

the costdistance-to-goal for points along grid boundaries. The linear interpolation is based

on the costdistance-to-goal of the corresponding horizontal or vertical edge’s two end-nodes.

Note that di,j and di,goal now represent the costdistance required to travel from vi to vj and

from vi to the goal, respectively16.

Let (n, m) be the grid position of node vi relative to the bottom-left node (Figure 7-left).

Nodes are spaced 1 unit apart vertically and horizontally. Let (y, x) be a point along one of

the 8 edges ρk shown in Figure 7-left. (y, x) ∈ ρk for k = 1 . . . 8, and (y, x) exists in the same

continuous coordinate space as (n, m). When vi is expanded, di,goal is calculated as follows:

di,goal = min
(

[(n, m)→ (y, x)] + d(y,x),goal

)

where [(n, m)→ (y, x)] is the costdistance of moving from (n, m) to (y, x) and d(y,x),goal

is the linearly interpolated costdistance-to-goal of (y, x). There are 8 edges that must be

examined to determine (y, x) and di,goal. Without loss of generality, we restrict our discussion

to finding the minimum costdistance-to-goal given a single edge (Figure 7-right). Similar

calculations are performed for the remaining 7 edges and the minimum di,goal over all 8 is

used as the final result.

Let cc and cd represent the map cost values of grids C and D, respectively. In [Ferguson and

16This is actually not as big of a change as it might appear at first glance. It is, in my opinion, beneficial to use
costdistanc as the priority heap ‘cost’ measure for all of the algorithms in the A* family. Doing so reflects both
the assumed degree of difficulty of moving across a particular area per unit of distance, as well as the total distance
that must be traveled. Note that when costdistance is used, distance itself is as an admissible heuristic as long as
distance ≥ 0 and cost ≥ 1. Further, if cost ≥ Cnst > 0 for some constant Cnst than distance multiplied by Cnst can
be used as an admissible heuristic for costdistnace ≥ 0.

viva

vb
C

D

ρ

(n, m)

(y, x)

viva

vb
C

D

ρ

(n, m)

(n, x̃)

(y, x) = (n-1, m-1)

Figure 8: Two possible ways to get from vi to a point on edge ρ. (Left) The path goes

directly to (y, x) through grid C. (Right) The path goes from (n, m) to (n, x̃) along the

bottom of grid D, and then through grid C to (y, x) = (n− 1, m− 1) at node vb.

Stentz, 2006b] it is shown that there are two possible ways a minimum costdistance-to-goal

path can travel from vi to point (y, x) on edge ρ. These are illustrated in Figures 8-left

and 8-right, respectively, and described by Equations 2 and 4, respectively (note that travel

directly from vi to va along the bottom of grid D is handled during the consideration of the

edge above ρ).

g(y)=cc

√

1 + (n−y)2 + da,goal(1−n + y) + db,goal(n−y) (1)

di,goal = min
n−1≤y≤n

g(y) (2)

.

g(x̃)=cd (m− x̃) + cc

√

1 + (x̃− x)2 + db,goal (3)

di,goal = min
m−1≤x̃≤m

g(x̃) (4)

The minimum of Equations 2 and 4 is used as the final result with respect to edge ρ. The

lesser of the two depends on the specific values of cc, cd, da,goal, and db,goal. Given the case

illustrated in Figure 8-right, it is proven in [Ferguson and Stentz, 2006b] that the path will

exit grid C at node vb.

Field D* is complete in a finite sampling of the environment and resolution complete in a

countable infinite sampling. Given an admissible heuristic, it is optimal in the sense that it

will return the best solution with respect to the problem formulation. With respect to the

real world, it much closer to optimal than D* and D* Lite.

1.5.11 Fast-Marching Level-Set Methods

Fast-Marching Level-Set Methods [Sethian, 1996,Philippsen, 2006] are similar to Field D* in

the sense that they assume nodes values represent sample points from a continuous field. The

term level-set refers to the solution of a real-valued function (with any number of variables),

for a specific constant. Given a 3D map described by a height function z = f(x, y), a level-set

can be thought of as the set of all points at a given height z. In general, level-set methods are

used to create something analogous to a height map that has one more dimension than the

original representation f(x, y). Instead of elevation, ‘higher’ z values correspond to points

located further away from the goal17. Gradient descent can be used to find a path to the

goal through this modified form of the representation.

A common analogy for this process involves a grass-fire. A small fire is started at the goal

and gradually spreads throughout the environment. The boundary of the fire is called a

wave-front. It is assumed that, the fire spreads at a constant rate through open terrain.

Further, it spreads in a direction perpendicular to the wave-front from any point on the

wave front. A any given time t, the boundary is a level-set with respect to t. Map obstacles

are handled in two ways: (1) The fire cannot spread to portions of the map containing

lethal18 obstacles. (2) Non-lethal19 obstacles only slow the progress of the fire as it sweeps

through—they do not stop it. In this example, the ‘height’ dimension z represents time20.

Again, a level-set can be calculated at each time for the wave-front.

In practice, the world is discretized into a grid of coordinates and the time the fire reaches

each coordinate is calculated. The term ‘fast marching’ is used to describe a computationally

efficient way to achieve this calculation. The basic idea is to only consider nodes within a

predefined distance of the wave-front at time t, when calculating the new wave-front position

at time t + 1. The discretized nature of the representation can only approximate the exact

contour of the wave-front. Therefore, a kernel function is used to calculate how the fire

propagates through the continuous domain, given the fast-marching band of values around

the previous level-set. This is similar to how Field D* uses linear interpolation to calculate

costdistance-to-goal values. In fact, Field D* uses a linear interpolation kernel. The most

common kernel used in fast-marching level-set methods is a quadratic interpolation kernel.

The relationship between Field D* and fast-marching level-set methods does not appear to

be as straight-forward as one might expect. Firstly, fast-marching level-set methods have

17With respect to some metric.
18The robot cannot move through them.
19The robot can move through them at a reduced speed.
20Note that the ‘time’ used in the algorithm as no relation to any real-world time that is experienced by the robot.

been slow to incorporate re-planning (i.e. dynamic) ideas that allow the field to be updated

on-line to reflect robotic movement and new information, instead of being recreated from

scratch (though a few have recently been proposed [Philippsen, 2006]). Secondly, the latter

does not yet have a principled way to deal with the cost of an obstacle—although, this is

not a concern if the representation only has lethal vs. free terrain. Current methods use a

predefined heuristic to calculate how much an obstacle with a given cost will slow the rate of

fire propagation. Further, the notion of time adds an additional constraint to the problem

that does not necessarily reflect any real-world quantity. This is particularly important

because the time gradient of the field is used during the path extraction process. That said,

it is possible that an equivalence exists between fact-marching level-set methods and Field

D* (assuming the same kernel is used in each) if time is defined in terms of costdistance;

however, this has not yet been determined.

1.5.12 Random Trees

Until this subsection, the graph-search algorithms I have talked about have all made the

assumption that the entire representation is explicitly known. The traditional graph-search

algorithms (depth-first, breadth-first, best-first, A*, Anytime A*, Lifelong A*, D*, and D*

Lite) all assume that the structure of the graph is known prior to each search or re-planning

step. The field based techniques (Field D* and fast-marching level-set methods) use the

graph structure to create a field, and then to calculate field values at a subset of continuous

points. After the field is created, the latter methods only use local graph structure (a few

nodes near a particular point) for gradient descent path extraction. Although these methods

can function using an implicit representation21 by simply checking the status of nodes as

they are added to the open-list, this is usually not done in practice. Implicit representations

are used in practice when the environment is too large or complex to model explicitly.

Random Trees is the name of a family of algorithms that operate somewhere between the

representation and planning subsystems [LaValle and Keffner, 2001]. Random trees are the

algorithms of choice when sampling-based-methods are used in the representation (see sec-

tion 1.2.4). These algorithms create the graph as they go, and do not assume any predefined

graph structure. That said, the resulting structure of the graph is at least as important

21Recall that an implicit representation uses a black-box function to determine whether or not a point in C-space
is valid.

as the graph-search algorithms used to traverse it. In fact, path-search usually happens in

parallel to graph creation, so that node values (distance-to-goal, heuristic estimated distance-

from-start, etc.) are calculated as soon as a new node is added to the tree. Random tree

algorithms usually operate in a continuous space, and the location of new nodes can be any-

where within the C-space. In practice, it is common to constrain a new node to be within

a certain distance of an old node. If a new node is closer to an old node than any old node

was to an obstacle, then the new node is guaranteed not to collide with an obstacle. Other

variations on this idea include: connecting new nodes to the closest old node that does not

involve moving through an obstacle, and/or moving any nodes that collide with an obstacle

to the edge of that obstacle (instead of simply throwing them away).

Random trees are often used in high dimensional C-spaces, such as those describing an artic-

ulated manipulator and/or many robots that must simultaneously coordinate their actions.

Many of the graph-search algorithms I have talked about can be implemented in a random

tree framework. These include the subfamilies that can be described as ‘anytime’ and ‘dy-

namic’ [Ferguson and Stentz, 2006a,Ferguson et al., 2006,Ferguson and Stentz, 2007]. I do

not believe the ‘lite’ framework has been used, and I assume this is because it is difficult

to create a back-pointer free search-tree that is flexible enough to both (1) allow random

sampling in continuous space and (2) facilitate gradient descent path-extraction.

1.5.13 Non-Random Tree Methods for Continuous Representations

The search through any sample-based representation of continuous space can be viewed

as a tree. The search starts at one place (vgoal) and attempts to get closer and closer to

another (vstart). For example, a greedy best-first search through continuous space creates a

degenerate search-tree with branching factor 1. The ‘hard part’ of non-random sample-based

methods is figuring out how to grow the tree through the C-space so that it will eventually

reach vstart.

Many different frameworks have been proposed for modeling the robot as a particle, and then

iteratively updating its position in the representation as a function of some other variable—

e.g. time22. All of these problems can be posed as greedy best-first search through continuous

space, and therefore also as tree-generating algorithms. Common ideas assume that obstacles

22Again, ‘time’ here is unrelated to time in the real-world.

have a repulsive effect on the point-robot, while the goal(s) have an attractive effect. Obvi-

ously, the resulting point-robot path through the representation is dependent on the kernel

function used to calculate repulsiveness or attractiveness. A common formulation uses a

force field to model the world (i.e. along the same lines of an electrostatic or gravitational

field). Others use velocity, acceleration, scent, etc. Collectively, these types of algorithms

are known as potential-field methods [Khatib, 1986,Koren and Borenstein, 1991,Murray and

Little, 1998].

As might be expected, many potential field methods suffer from local optima that can cause

the algorithm to fail. For instance, the point-robot may get stuck oscillating between two

points, or fall into equilibrium on the edge of an obstacle. Possible solutions include:

1. Introducing a degree of random noise into the system.

2. Defaulting to a random-walk, temporarily, if it can be determined that the algorithm

is not making progress.

Obviously, neither of these addresses the root of the problem. In my opinion, these short-

comings have caused the robotics community to move away from potential field methods,

especially for global planning, in favor of algorithms with better performance guarantees.

1.5.14 Analytical Methods

I have devoted the bulk of section 1.5 to path-planning methods that produce discrete paths.

A discrete path can be thought of as a bread-crumb trail leading from the start to the goal.

Obviously, in a discrete representation of the world, this is the only type of solution that is

possible. However, in a continuous C-space it is sometimes possible to describe a continuous

path as a collection of curves [LaValle, 2006]. The simplest path of this type is a parametric

curve, where the position of the robot is defined by a separate function in each dimension of

the C-space. More complex representations might use a set of functions—for instance fk,l()

is used when k ≤ p < l, for some parameter p.

Analytical solutions are not often used for global path-search. In practice, it is computa-

tionally expensive (and sometimes even mathematically impossible) to find a set of curves

that will satisfy the constraints of nontrivial problems23. Nonetheless, there are a few com-

mon applications of analytical methods. For instance, the practice of calculating possible

vehicle trajectories, given the state of the robot and a set of steering angles [Goldberg et al.,

2002]. This type of solution is often welded to the front of a discrete path, creating a hybrid

path that respects the real-world constraints imposed by momentum, acceleration, and/or

non-holonomic vehicle dynamics [Carsten et al., 2007]. In these systems it is assumed that

a new path will be found before the robot has reached the end of the analytical section of

the hybrid path.

1.5.15 Discussion on representations and path-planning algorithms

The representation system that is chosen to model the environment goes hand-in-hand with

the planning system that will operate on top of it. If the representation is discrete and

deterministic, and connectivity information exists about the relationships between different

states, then graph-search algorithms can be used directly. On the other hand, if a continuous

representation is used, then the path-planning problem can sometimes be solved analytically

to yield a continuous solution. The latter, however, is rarely done in practice due to com-

putational complexity. If a continuous solution cannot be calculated, then a graph- and/or

sampling-based approach must be used.

One option is to use combinatorial methods to create a graph in continuous space; and then

use a graph-search technique to find a path through that graph. Although this transforms

the problem into a discrete graph, in special cases it is still possible to guarantee paths that

are optimal with respect to the real world24. For example, if the STAR algorithm [Lozano-

Perez, 1983] is used to create the graph from a geometric model of an environment (and

the environment consists only of obstacles and free-space), then an optimal graph-search

algorithm can be used to find the desired path. The complexity of creating a discrete graph

guaranteed to produce optimal real-world paths is exponential in the number of C-space

dimensions. Therefore, it is impractical to use this approach in high dimensions. Also,

although the complexity of the STAR algorithm is only linear in the number of points used

to describe the environment, it does assumes that points are used to describe the environment.

23As a contrived example, the Navier-Stokes equations for fluid flow have yet to be completely solved in three
dimensions—they are, however, often simulated via a discretization with respect to time. This is akin to the non-
analytical path-search techniques I have described.

24In addition to being optimal with respect to the graph.

Therefore, this approach is also impractical if a point-based geometric model of the world

does not exist.

Sampling-based methods are the option of choice when the C-space contains many dimen-

sions and/or requires an implicit representation or other non-geometric model. Sampling-

based methods create a discrete graph representation of the (continuous) environment. In

a common implementation, the environment is sliced into non-overlapping cells. There is

a fixed relationship between cells and graph nodes, and between relative cell locations and

graph edges. A graph-search algorithm can be used to find a solution that is optimal with

respect to the graph model of the world, but that may not be optimal with respect to the

real-world. This is currently the most common technique for rovers operating in three or

fewer dimensions. The method of choice in more than three dimensions is random-trees.

Random trees perform graph construction simultaneously to graph-search. New nodes, cre-

ated by sampling continuous points in C-space, are linked to old nodes using a predetermined

procedure25. Paths provided by random trees can be far from optimal. However, they are

often used for problems so complex that finding any solution is considered an achievement.

I have covered quite a few graph-search algorithms. I will now summarize what I consider

to be the most important highlights of this discussion:

1. Guarantees on completeness are important to consider when choosing which algorithm

to use. In many cases, the type of representation that is used will affect whether or

not an algorithm is complete, resolution complete, probabilistic complete.

2. best-first search algorithms can be used to focus the search and decrease search time.

If appropriate precautions are taken, best-first search can produce optimal results

with respect to the graph—for instance, if an admissible heuristic is used in the A*

algorithm.

3. ‘Lifelong’ algorithms modify data in the search-tree instead of performing new search

from scratch. This often leads to faster re-planning calculations when map infor-

mation changes but the start and goal location remain the same. When properly

designed, lifelong algorithms inherit the search properties of the original algorithms

they are developed from.

25The specific procedure is dependent on algorithm and C-space.

4. ‘Dynamic’ algorithms are similar to ‘Lifelong’ algorithms except that the start posi-

tion of the robot can also change. This has allowed the speed of on-line re-planning

to increase by orders of magnitude, and has contributed to the popularity of using

graph-based representations for field robotics. Dynamic algorithms also inherit the

search properties of the original algorithms they are developed from.

5. ‘Lite’ versions of dynamic algorithms do not store an explicit search-tree with pointers.

Instead, they use rhs values to compare the current cost-to-goal of a node with its

previously assumed best cost-to-goal. If the two are not equal, then the information

in that part of the graph is updated. This propagates changes through the implicit

search-tree. Paths are extracted using gradient descent, instead of the traditional

method of following back-pointer through an explicit search-tree.

6. ‘Field’ algorithms (Field D* and fast-marching level-set methods) liberate the value-

to-gaol values from considering travel only along graph edges. These techniques also

allow paths to be extracted that are not constrained to nodes and/or graph edges.

This allows more natural paths to be created, with respect to the real word. To date,

these methods have only been applied in low dimensional (3 or fewer) C-spaces.

7. ‘Random-tree’ algorithms are used in complex C-spaces when other methods are

computationally prohibitive. They can be implemented in many different frameworks,

including those described as ‘lifelong’ and ‘dynamic.’

8. Potential field methods and other continuous greedy best-first search techniques are

theoretically equivalent to non-random-sampling-based continuous space graph-search

methods. The degenerate search-tree they create has a branching factor of 1.

9. When a continuous representation is used, the ‘cost’ that is minimized during graph-

search should reflect both the per-distance difficulty of moving between two location

as well as the distance between those locations.

I have covered graph-search algorithms at this level of detail for three reasons. First, I find

them interesting. Second, graph-search algorithms are extremely popular for path-planning.

Many representation frameworks use graphs for no other reason than the fact that doing

so allows an optimal or near-optimal path to be extracted in an intelligent way26. Third,

26i.e. with guarantees on optimality, completeness, and runtime.

understanding how graph-search algorithms work helps one to appreciate that, given the

same graph, many search algorithms may produce similar or identical paths. As a result,

the most straightforward way to modify the behavior of a path-planner is often to change

how cost is defined in the representation. This final point is also why a large portion of

this paper is devoted to looking at how machine learning is applied in the representation

subsystem.

1.6 Markov Decision Processes

This subsection can be though of as a continuation of the discussion on representations

(section 1.2). I have chosen to wait until this point to talk about Markov decision process

because it is helpful to put them in the context of graphs and graph search algorithms.

Up to this point, all of the representations I have talked about have been deterministic—each

action is assumed to have known consequences. In contrast, Markov decision processes (or

MDP) can be conceptualized as nondeterministic graph representations of the world [Bell-

man, 1957]. In other words, the outcome of executing a particular action may be inherently

unknowable in advance (although there may be a distribution over possible consequences).

A notion of discrete time exists in an MDP. An event is said to occur at time t, where t is

an integer. Time ta occurs after time tb iff ta > tb. The system exists in a particular state

vi at time t. States in a MDP are analogous to the vertices in a graph. At each particular

state, a set of actions are available to the system. Let ak∈[i,t] represent an action ak available

to the system at state i and time t. Choosing to execute a particular action at time t causes

the system to transition to a particular state vj by time t + 1 (note that i may or may not

be equal to j). Further, a reward or punishment is given to the system at each t based on

its current state, where rewards/punishments of 0 are allowed.

Because the graph is nondeterministic, choosing to execute the same action in the same

state may produce two different results (e.g. a different reward is given or a different state

transition occurs). Further, the set of actions available at a given state may not be static.

However, it is assumed the distributions of rewards, actions, and action outcomes are all

static, but possibly unknown. It is also assumed that these distributions are not influenced

by the system’s previous actions, state visits, or rewards/punishments received—they depend

only on the state that the robot is currently in (hence the ‘Markov’ part of the name).

From a planning point of view, an action in an MDP is essentially a marriage between the

edges in a graph and the Schrödinger’s cat idea27—choosing to execute action ak∈[i,t] is like

simultaneously planning to traverse an entire set of edges, each with their own cost and

probability of actually being traversed. There is no way to know which edge in this set will

actually get used until ak∈[i,t] is executed. The cost graphs of section 1.5 can be considered

special MDPs where there is only one possible reward and one possible edge per action, and

the probability a particular action is available at a state is 1 or 0 for existent and nonexistent

edges, respectively.

In a partially observable Markov decision process or POMDP the states cannot be known

directly but must be inferred from observations. Given an infinite number of observations,

and a means of recording previous information, the probability of knowing which state the

agent is in (based on previous observations and actions) tends toward 1. Obviously, being

partially observable adds an additional layer of complexity to a MDP.

Planning in a MDP (not to mention a POMDP) is a difficult problem. In most MDPs, the

only type of ‘path’ that can be extracted is something along the lines of a most-likely scenario.

Alternatively, it may be possible to describe a posterior distribution over the environment

that represents the probability the robot will visit any/all states on its way to the goal.

In general, the task of planning in a MDP is considered a reinforcement learning problem.

Therefore, I shall discuss it in chapter 2, in the context of machine learning.

1.7 Actuation

Once a plan has been created by the planning subsystem, the actuation subsystem is respon-

sible for actually executing the plan. In general, this involves translating the plan into an

instruction sequence that is compatible with the various devices (motors, serves, switches,

etc.) that the robot uses to act on the environment. As with the sensing subsystem, the

actuation subsystem is highly dependent on the specific hardware available to the robot.

To ensure safety and overall relevance/usefulness, any plan sent to the actuation subsystem

27A thought experiment originally proposed in [Schrodinger, 1935] to address the author’s concerns with quantum
mechanics—i.e. how does one reason about events that may or may not be occurring in the present/future, given
that their occurrence depends on the unknown outcome of past nondeterminism?

must respect the latter’s constraints. Therefore, the constraints of the actuation subsystem

must be considered when the planning subsystem is developed.

2 Machine Learning Background

Machine learning is a field of computer science that encompasses an eclectic variety of

problem domains. Many of these domains involve teaching a system to perform a task or

finding the optimal solution to a complex problem (often these are one and the same). A

full survey of machine learning methods is beyond the scope of this paper, but I will review

a few machine learning subfields that are of particular relevance to robotics. After a general

overview of these methods, I will narrow the discussion to specific algorithms that have

recently28 been applied to path-planning and/or the environmental representations used for

path-planning. I have chosen this format to emphasize current trends in the application

of machine learning to path-planning. The survey of machine learning presented in this

chapter is by no means an exhaustive search. As previously stated in the introduction,

this chapter has been included to give those uninitiated to the concept of machine learning

enough background to understand chapter 3. Therefore, this chapter may seem trivial to

machine learning experts, and can be skipped by the latter.

2.1 Machine learning subfields: high-level overview

Two subfields of machine learning that are of particular interest to robotics applications

are supervised learning and reinforcement learning. The following two subsections give a

brief high-level introduction to these problem domains, and this section is concluded with

an outline of other machine learning subfields.

2.1.1 Supervised Learning

Supervised learning algorithms teach a system to discriminate between various groups or

classes of input, based on examples of each class. The input is usually represented as

a vector, where each dimension of the vector corresponding to a particular attribute or

feature. For instance, a color might be represented by a vector of three values—one each

28Within the last five years.

sensing

sensing

representation

representation

planning

planning

path-planning

sensor 1

sensor 2

training class labels

test class labels

training features

test features

supervised learning cost

Figure 9: How supervised learning is used to provide class labels to the representation

system, and ultimately cost to a path-planning algorithm. Top: as incorporated into the

representation subsystem. Bottom: used to create a meta-sensor. Note that the mapping

from class labels to cost is usually provided a priori.

for red, blue, and green. Suppose a human wishes to teach a system the difference between

‘hot’ and ‘cool’ colors. They would provide the system examples of hot and cool colors,

along with the appropriate class labels—i.e. the knowledge that a particular color is either

hot or cool. After a suitable number of examples have been given, the algorithm learns to

label never before seen colors as either hot or cool. In this context, the set of examples with

known labels is called the training set and the set of never-before-seen colors is called the

test set.

Supervised Regression is similar to the idea described above, except that the algorithm

attempts to map feature vectors to real number values instead of non-ordinal class labels.

Regression is useful when an output is used as a measure.

When both the training examples and labels are provided from on-board sensors, this is

called self-supervised learning. For example, feature vectors are provided by a camera and

the corresponding labels by a depth sensor29. This is useful because the learned color-obstacle

relationship can be extrapolated to parts of a camera image that are beyond the range of

the depth sensor. Systems using self-supervised learning require the function between class

labels and edge cost to be known a priori. In practice, this is usually accomplished by

hand tuning a heuristic function. Figure 9 displays how the supervised learning algorithm

described in the above example fits into a theoretical robotic system.

29For example, anything over 10cm high labeled as ‘obstacle.’

sensing representation

planning

meta-sensor

reinforcement learning

policy

inverse kinematics

trajectory-planning actuation

feedback control

Figure 10: How reinforcement learning is used in the planning system. Note that it can

be used to create a policy that acts as a path-planning/reactive-planning substitute—sitting

between the representation and trajectory planning modules (solid-arrows)—and/or to refine

operation within other planning modules (dotted-arrows).

2.1.2 Reinforcement Learning

Reinforcement learning algorithms teach a system appropriate actions based on the concepts

of reward and punishment. The world in which the system ‘lives’ is assumed to be a Markov

decision process or MDP (section 1.6). Although, depending on the specific reinforcement

learning algorithm used, the MDP may or may not be explicitly modeled by the system

(Algorithms that do not explicitly model the MDP are called model-free methods).

The probability distribution associated with the system executing a particular action at a

particular state is called a policy. The system is trained to modify its policy based on rewards

and/or punishments (i.e. negative rewards) it receives. In practice, it is common to compute

this as a sum of the immediate reward resulting from a particular action plus a discounted

sum of all additional rewards that are eventually received as a result of choosing the original

action.

In imitation learning a system is trained to behave like an expert. Given the framework of

reinforcement learning, this can be posed as a policy learning problem. The system attempts

to modify its policy in such a way that the resulting behavior is most like the expert. It

is called is called inverse reinforcement learning when the goal is to extract the particular

reward function used by the expert.

Figure 10 depicts common ways reinforcement learning is applied in the planning subsystem.

2.1.3 Other Machine Learning Subfields

Other machine learning subfields that I will not cover in-depth include:

1. unsupervised learning models unlabeled data, often by grouping similar things to-

gether. Other terms for specific types of unsupervised learning include clustering,

topic modeling, and latent semantic analysis.

2. simi-supervised learning uses a relatively small number of labeled training examples

along with a relatively large number of unlabeled training examples. The goal is

similar to supervised learning, except that much of the data is unlabeled.

2.2 Supervised Learning Algorithms

Although the term ‘supervised learning’ is sometimes used in conjunction with reinforcement

learning algorithms that relay on user input, it usually denotes the use of supervised classi-

fication or regression algorithms. I have included algorithms in this section only if they are

used by the specific systems outlined in chapter 3. There is a vast number of other supervised

learning algorithms, and this section should not be viewed as an exhaustive survey.

Let xtrn
i be a row vector representing the ith training example and let ytrn

i be the known

output corresponding to xtrn
i . Each dimension of xtrn

i contains a value associated with a

particular feature of the ith training example—recall our toy color example where each

dimension of xtrn
i is a value associated with a particular color plane. Depending on the

machine learning technique used, ytrn
i may be an ordinal value—like a real number or an

integer—or a non-ordinal value—like the token ‘hot.’ Similarly, each dimension of xtrn
i may

contain ordinal or non-ordinal values (or a combination), depending on the specific supervised

learning method used. Let xtst
j be the jth test vector. A trained model will return a prediction

ŷtst
j for each xtst

j . Note that ŷtst
j is only a good guess for the actual—although unknown—value

ytst
j . It is often convenient to stack individual input vectors into matrices and output values

into vectors. Let Xtrn and Xtst be the training and test sets in matrix form, respectively;

and let Ytrn and Ŷtst be the training labels and predicted labels in vector form, respectively.

Note that the ith rows of Xtrn and Ytrn correspond, as do the jth rows of Xtst and Ŷtst.

2.2.1 Support Vector Machines

Support vector machines (or SVMs) represent data xtrn
i and xtst

j as points in a high dimen-

sional space ℜd, where d orthogonal spatial dimensions correspond to the features of xtrn
i .

There are d features in xtrn
i and d dimensions in ℜd. Let there be k unique class labels in Ytrn

(labels are repeated as necessary). SVMs attempt to find k− 1 high dimensional manifolds,

each of local dimensionality d−1, that separate the data into k partitions based on the class

labels. If the high dimensional manifolds are hyperplanes, then the model is called a linear

SVM; otherwise, it is called a non-linear SVM. Non-linear SVMs are often implemented by

first transforming Xtrn using a non-linear function, and then applying a linear SVM to the

transformed data.

The data points necessary to describe the manifold(s) are called support vectors. In the

event that all examples are correctly classified, a minimum number of support vectors are

needed30. Given a particular family of d − 1 dimensional manifolds, it may not be possible

to perfectly separate the data into k partitions. In this case, misclassified examples also

become support vectors. Let xsv
s denote the sth support vector and let f(xsv

s) denote a cost

associated with the misclassification of that vector. f(xsv
s) is a function of the distance that

xsv
s would have to move in order to be correctly classified. The algorithm attempts to place

the k−1 manifolds such that the sum over f(xsv
s) of all s is minimized. For more information

see [Aizerman et al., 1964,Burges, 1998,Halatci et al., 2007,Bajracharya et al., 2008].

2.2.2 Gaussian Mixture Models

As in the previous section, Gaussian mixture models or GMMs view each feature vector

xtrn
i as a point in ℜd, where d is the number of features in xtrn

i . Let there be k distinct

possible values for ytrn
i (i.e. classes). GMMs create a generative model by placing k sets of

d dimensional Gaussians distributions in ℜd (i.e. there is one set per class). The positions

of each Gaussian is selected such that the probability of the actual data being generated by

the model is maximized. In practice, each Gaussian is define by a mean and a covariance

30The precise number varies with d, but in the case of a line separating ℜ2, there are two points on one side of the
line and one on the other.

matrix that describe its position and shape in ℜd, respectively. Given a model, ŷtst
j is

often determined by the Gaussian distribution that has the highest probability of generating

xtst
j . An alternative is to say that xtst

j belongs to each of the k classes with a certain

degree of probability. For more information see [McLachlan and Basford, 1988,Jansen et al.,

2005,Thrun et al., 2006,Angelova et al., 2007,Halatci et al., 2007].

2.2.3 Neural Networks

A neural network is a computational network model inspired by the arrangement of biological

neurons in an animal brain. The network can be represented as a graph of nodes connected

by edges. The edges propagate activation information from one node to another akin to how

biological neurons pass electrical signals. A node is activated as a function of its incoming

edge signals. In practice, the function may output binary values—e.g. ‘on’ or ‘off,’ or a

range of real values that represent intermediate levels of activation. When activated, the

node sends a signal along its outgoing edges. In a feed-forward network the graph has L

layers of nodes. The nodes in layer l have directed edges to the nodes in layer l+ where

1 ≤ l < l+ ≤ L. In more complex models the edges may be arranged arbitrarily. Levels 1

and L are called the input and output layers, respectively, and other levels are called hidden

layers. Input vectors xtrn
i are mapped to the input layer, with the hope that a trained model

will produce the desired output ytrn
i at the output layer. The model is iteratively trained by

modifying the activation functions of nodes that lead to incorrect output, the arrangement

of edges, or a combination of these. The activation level is commonly determined as a

function (e.g. the hyperbolic tangent) of a weighted sum of the incoming signals. For more

information see [Rosenblatt, 1962,Gurney, 1997,Happold et al., 2006,Erkan et al., 2007].

2.2.4 Adaptive Boosting

Adaptive boosting or AdaBoost is a meta-algorithm that iteratively calls a seperate, and

usually simple, supervised learning algorithm. Each training example (xtrn
i , ytrn

i) is initially

assigned an equal weight with respect to the influence it has on training the model. After

each iteration, incorrectly classified examples are weighted relative more, while the correctly

labeled examples are wighted relatively less. This causes the algorithm to focus its attention

on the examples that are misclassified. For more information see [Freund and Schapire,

1997,Freund and Schapire, 1999,Konolige et al., 2006].

2.2.5 Histogram Methods

Histogram based methods rely on the fact that normalized histograms can approximate

any probability distribution. The histogram approximation approaches the true distribution

as bin width approaches 0 and the number of training examples approaches infinity. His-

togram based methods usually build one histogram per class per feature dimension. The

probability that xtst
j belongs to a particular class is found by aggregating the in-class prob-

abilities along each dimension. These, in turn, are found by normalizing the associated bin

counts for each class (along a particular dimension) by the total number of bin counts for

all classes (along that same dimension). In a ‘vanilla’ implementation, the influence of each

dimension is weighed equally. In more complex models, these wights may be determined

by a meta-algorithm or defined based on expert knowledge. More information can be found

in [Nobel and Lugosi, 1994, Lugosi and Nobel, 1996, Happold et al., 2006, Grudic et al.,

2007,Bajracharya et al., 2008].

2.2.6 Hypersphere Approximations

This algorithm was developed in the field robotic community by [Kim et al., 2007] for the

specific task of classifying image segments as either ‘obstacle’ or ‘traversable.’ The algorithm

views each feature vector xtrn
i as a point in ℜd, where d is the number of features in xtrn

i . A

hypersphere of radius r is defined to exist around the first example of each class (‘obstacle’

and ‘traversable’) in ℜd. There is a count associated with each hypersphere that is initialized

to 1. During the mission, more training examples are given to the model. If a new example

exists within a hypersphere belonging to its class, then that particular hypersphere’s count

is incremented. If a new example exists within multiple hypershperes belonging to its class,

then the count of the closest hypersphere is incremented. If a new example does not exist

within a hypersphere of its class, then a new hypersphere is added to the mode,l centered on

the new example. In practice, the number of hyperspheres per class can be limited to a fixed

value, and old hypershperes or hyperspheres with small counts removed to accommodate new

examples. ŷtst
j is determined by choosing the K nearest hyperspheres to xtst

j (as determined by

the L2 norm), then selecting the class with the highest count sum over those K hyperspheres.

An estimate of the probability of correct classification can be found by normalizing the in-

class count sum over the K hyperspheres by the total count sum over the K hyperspheres.

2.3 Reinforcement Learning Algorithms

Reinforcement learning algorithms assume the world is a Markov decision process (sec-

tion 1.6). An algorithm may try to infer some or all of the MDP by observing the effects

of the actions it exicutes. The resulting estimation of the MDP can then be used to crate

a policy for future decisions. These types of algorithms are known as model-based methods.

In contrast, model-free methods create policies that attempt to maximize reward without

modeling the underlying dynamics of the MDP.

There are many different frameworks for reinforcement learning algorithms. I have chosen to

describe two common algorithms that are used by systems described in chapter 3, and two

algorithms invented specifically for representation/path-planning applications. The latter

describe themselves as reinforcement learning, but do not use a standard reinforcement

learning template. Note that there are many other reinforcement learning algorithms I will

not cover, and this section should not be viewed as an exhaustive survey of reinforcement

learning algorithms. For a more comprehensive survey, I recommend [Kaelbling et al., 1996].

2.3.1 Q-learning

Q-learning is a model-free method first proposed by [Watkins, 1989] and refined in [Watkins

and Dayan, 1992]. Q-learning attempts to learn a concept of delayed reward by accounting for

future rewards that indirectly result from previous actions. This allows the system to avoid

locally optimal actions that are suboptimal globally. Because future rewards are uncertain,

they are discounted by a factor γ for each time-step into the future they are expected to

occur. The algorithm is called ‘Q-learning’ because Q is conventionally used to represent the

sum of discounted reward that is expected to be received from executing a particular action.

Assuming all Q values are known, an optimal policy involves executing the action with the

largest Q value during each time-step. In practice, Q values are initially unknown and must

be learned through interaction with the environment.

Let Q∗(vi, ai,k) be the expected discounted reward of executing action ai,k in state vi and

then choosing all subsequent actions optimally. The value of vi is the maximum expected

discounted reward that can be received from vi (i.e. assuming the best action is taken), and is

denoted V ∗(vi). Let the immediate reward received for executing ai,k at state vi be denoted

R(vi, ai,k). The discount factor is denoted γ, and the transition function from state vi to

state vj is denoted T (vi, ai,k, vj) and assumed to output 1 if action ai,k causes the agent to

perform the necessary transition between from vi to vj , and 0 otherwise.

V ∗(s) = max
k

Q∗(vi, ai,k)

Where Q∗(vi, ai,k) can be expressed as:

Q∗(vi, ai,k) = R(vi, ai,k) + γ
∑

vj

T (vi, ai,k, vj) max
l

(Q∗(vj , aj,l)

The expected optimal policy at state vi is denoted π∗(vi) and is calculated:

π∗(vi) = arg max
ai,k

Q∗(vi, ai,k)

The update rule for the value of a state and action combination Q(vi, ai,k) in Q-learning is

given by:

Q(vi, ai,k)← Q(vi, ai,k) + α
(

R(vi, ai,k) + γ max
l

(Q(vj , aj,l)−Q(vi, ai,k)
)

Where α is a parameter that decays slowly over time. Note that Q will converge to the

optimal Q∗ with probability 1.

2.3.2 Prioritized sweeping

Prioritized sweeping [Moore and Atkeson, 1993] is a model-free based that keep track of

possible state-transitions and rewards. The algorithm is similar to Q-learning, except that

it works on state values V (vi) instead of state-action values Q(vi, ai,k). Prioritized sweeping

only allows k changes in expected state values per iteration, and focuses changes to states

that will benefit most from being changed. A priority queue is used to keep track of which

states are likely to have their values significantly modified by an update. The update rule

for prioritized sweeping can be expressed as:

V (vi)← max
k



R̂(vi, vi,k) + γ
∑

vj

T̂ (vi, ai,k, vj)V (vj)





sensing representation

planning

meta-sensor

reinforcement learning

human

inverse kinematics

trajectory-planningpath-planning

reactive-planning

actuation

feedback control

Figure 11: How reinforcement learning is employed to learn a cost-function over representa-

tion data that is then used for graph-search path-planning.

Where R̂(vi, vi,k) and T̂ (vi, ai,k, vj) are the current models of the reward and transition func-

tions. A state vj is a predecessor of vi if vi can be reached by executing an action at state

vj . After an update takes place, the queue priorities of the predecessors of vi are adjusted

to be ∆V = |Vold − V (vi)| if they are currently less than ∆V , where Vold was the value of

state vi before it was modified.

2.3.3 Linear Cost Function Learning

[Bagnell et al., 2006] use a technique that may be considered a hybrid of supervised learning

and imitation learning to learn a graph-search cost function over map features, see Figure 11.

The algorithm assumes that ‘good’ examples of paths through MDPs31 are provided by an

expert a priori. It also assumes that a loss-function exists to evaluate the similarity of two

paths, given a MDP. The agent’s policy is implicitly defined by the behavior of an optimal

graph-search algorithm when a linear cost function over map features is used. The algorithm

attempts to modify the linear cost function so that the resulting agent behavior resembles

that of the expert.

Let a loss function between an agent policy produced path µ∗ and the ith expert specified

optimal path µi be defined as follows:

L(y, yi) = Li(y) = lTi µ

31I believe the ‘MPDs’ used in this algorithm are actually deterministic, and can therefore be interpreted as weighted
graphs.

where li can be interpreted as a loss vector over state-action combinations that dictates the

penalty for deviating from µi. The solution involves solving a quadratic program as follows:

min
w,ζi

1

2
‖w‖2 +

γ

n

∑

i

βiζ
q
i

such that for all i the following relationship holds:

wTfi(yi) ≥ max
y∈Yi

wTFi(y) + Li(y)

where Fi is the set of map features, γ ≥ 0 is a hyper-parameter, ζi is a slack variable that

permits violation of the constraints with a penalty that scales with γ, and q is the norm

order of the slack penalty—i.e. a q of 1 or 2 denotes using the L1 or L2 norm, respectively.

βi > 0 is a data dependent scaler used to normalize examples of different lengths. Further

simplification is achieved by only considering cases where both Fi() and Li are linear in the

state-action frequencies µ. [Bagnell et al., 2006] note that µ ∈ Gi expresses the Bellman-flow

constraints for each Markov Decision Process. This and further simplifications are used to

transform the problem into the following quadratic program:

min
w,ζi,ui

1

2
‖w‖2 +

γ

n

∑

i

βiζ
q
i

such that for all i the following holds:

wTFiµi + ζi ≥ sT
i ui

and also such that for all i, x, and a the following holds:

ux
i ≥ (wTFi + li)

(x,a) +
∑

x′

pi(x
′|x, a)ux′

i

Where pi() is a transition probability. Finally, the the program is optimized for efficiency by

using a hinge-loss. ζi are tight:

ζi = max
µ∈Gi

(wTFi + lTi)µ− wTFiµi

and the problem can be expressed as a single convex cost function:

cq(w) =
1

n

n
∑

i=1

βi

(

max
µ∈Gi

(wTFi + lTi)µ− wTFiµi

)q

+
λ

2
‖w‖2

Although not differentiable, this can be solved using ‘sub-gradient’ descent. The sub-gradient

of the objective function gq
w is given by:

gq
w =

1

n

n
∑

i=1

qβi

(

(wTFi + lTi)µ∗ − wTFiµi

)q−1 · Fi∆
wµi + λw

where u∗ = arg maxµ∈Gi
(wTFi + lTi)µ and ∆wµi = µ∗ − µi. Finding the sub-gradient requires

calculating:

u∗ = arg max
µ∈Gi

(wTFi + lTi)µ

for each MDP (i.e. training example). However, this is equivalent to solving the MDPs while

using (wTFi + lTi) as the cost function. In other words, the final step can be solved using A*

or an equivalent method (see section 1.5) to find the least cost path through each training

example.

2.3.4 Non-linear Cost Function Learning

[Ratliff et al., 2007] builds directly on [Bagnell et al., 2006] (previous section). The idea is

to ‘boost-in’ new features by using the output of a simple classifier, where the classifier is

trained to differentiate between: (1) correct parts of the expert specified path not followed

by the agent and (2) incorrect parts of the agent’s path. The risk function R() is similar to

the cost function cq() of the previous section, and expressed as:

R(w) =
1

n

n
∑

i=1

βi

(

wTFiµi −min
µ∈Gi

(wTFi − lTi)µ

)

+
λ

2
‖w‖2

The sub-gradient is given by:

gq
w =

1

n

n
∑

i=1

Fi∆
wµi + λw

Fi is the set of features associated with example i, including the learned classification outputs.

Also note that:

u∗ = arg min
µ∈Gi

(wTFi + lTi)µ

and ∆wµi = µ∗ − µi. The algorithm iteratively adds additional classifier generated features

until the resulting behavior of the agent is ‘good enough’ on the expert provided example

maps. The program must be solved at each iteration because the size of Fi is modified to

include the new classifier labels, based on the agent’s mistakes during the previous iteration.

3 Applications of Machine Learning to Path Planning

Robotic systems have many parameters that need to be tuned. The tuning task has tradi-

tionally been delegated to a human, and accomplished through a process of trial-and-error.

Unfortunately, hand-tuned parameters tend to make a system brittle. Even if a particular

set of parameters works well in one application, it may not easily transfer to other applica-

tions. The main argument for using machine learning in robotics is that it makes a system

more robust by allowing system parameters to be adjusted automatically—thus improving

performance. This has the additional advantage of reducing the effort required by the robot’s

human masters.

Recall the theoretical robotic system described in chapter 1. It consists of four general

subsystems, interacting as follows:

sensor→ representation→ planning → actuation

In this chapter I will work through the robotic system, describing how machine learning

has been applied in each part. As previously stated, the focus of this paper is on how

machine learning is used for path-planning and in the representations used for path-planning.

Therefore, only in-depth discussion is provided on these topics. An important point to keep

in mind while reading this chapter is: there is no ‘standard’ way to include machine learning

in a robotic system. Different systems use different methods to transform sensor data into

actuation commands. Machine learning can be applied at many different points along the

way.

3.1 Machine Learning in Meta-Sensors

Simple machine learning ideas might be applied to raw sensor data to help improve its

accuracy or to help optimize sensing equipment [Kalman, 1960,Kltagawa, 1996,Parker et al.,

2005]. However, the most common application of machine learning in the sensing subsystem

is as part of a meta-sensor. Recall from section 1.1 that a meta-sensor uses software to

provide higher-level data than might be expected from a simple sensor (for instance, a person

detector [Rowley et al., 1998, Haritaoglu et al., 1998, Bellotto and Hu, 2009]). Because a

meta-sensor draws on data stored in the representation to help make its decisions, it could

alternatively be considered part of the representation subsystem:

sensor→ (meta−sensor↔ representation)→ planning → actuation

Machine learning has been used in robotics to create meta-sensors from image space data

in [Jansen et al., 2005,Happold et al., 2006,Konolige et al., 2006,Thrun et al., 2006,Erkan

et al., 2007,Grudic et al., 2007,Ollis et al., 2007,Halatci et al., 2007]. Recall from section 1.1

that an image consist of spatially related raw sensor readings32.

In [Jansen et al., 2005] Gaussian mixture models (section 2.2.2) are used to classify terrain

as ‘sand,’ ‘gravel,’ ‘grass,’ ‘foliage,’ or ‘sky’ in image-space. Image features are pixel-color

planes that have been adjusted to account for gamma correction in the camera. Training

example labels are provided off-line by a human, and cross validation is used to determine

the optimal number of Gaussians per model. A separate GMM is built for each type of

terrain the robot is expected to encounter (e.g. desert, forest, marshland), and an additional

meta-gausian-model is used to determine which environment the robot is currently in.

In [Happold et al., 2006] histogram methods (section 2.2.5) are used on-line in image-space

to learn a mapping from color to geometric classes. Class labels are provided from stereo

disparity. More recent work by the same authors [Ollis et al., 2007] focuses on learning the

probability that pixels are associated with the ‘obstacle’ class.

[Konolige et al., 2006] explore two different self-supervised frameworks in image-space. The

first is a path detection technique that uses a Gaussian mixture model (section 2.2.2) in

conjunction with AdaBoost (section 2.2.4) over decision stumps33. At start up, the system

makes the optimistic assumption that it is on a path. The terrain in front of the robot is

sampled and used to create a GMM in image space to distinguish between ‘path’ from ‘not

path.’ Next, all pixels in the image are labeled according to this classification. If the resulting

label pattern has a path-like shape, then the robot concludes that it is, in fact, on a path.

Finally, this labeling is used with AdaBoost to create a decision stump that determines ‘path’

vs. ‘not path’ for subsequent images. The system repeats this process after every meter of

movement. The second method presented in [Konolige et al., 2006] is similar to the first,

except that near-field stereo is used to provide AdaBoost with ‘traversable’ vs. ‘obstacle’

examples. AdaBoost creates a decision stump that is used to classify the remaining image

and/or subsequent images.

[Thrun et al., 2006] outlines the system that won the DARPA Grand Challenge in 2005.

The system uses a Gaussian mixture model (section 2.2.2) to learn a mapping from color

32An image exists between the sensor and representation systems (or is in both of them at the same time), and in
my opinion is the quintessential meta-sensor input data.

33A simple binary classifier that uses a single feature to make a decision. The feature chosen is the one expected
to maximize accuracy.

(red, green, blue) to traversability. Class labels are provided by on-board laser sensors. As

new training examples are provided, new ‘local’ Gaussians are created and then added to the

‘global’ model. This is done by either modifying the model’s previous set of Gaussians, or

discarding them in favor of the new ’local’ Gaussians. The former option is chosen over the

latter if the mahalanobis distance between a new and old Gaussian is less than a predefined

threshold.

In [Erkan et al., 2007] a neural net (section 2.2.3) is trained off-line from log-files34 and used

to extract low dimensional texture features from normalized YUV space image patches. A

scaled image pyramid is also used to normalize the image-space appearance of near- and

far-field information.

A hierarchical Gaussian mixture model (section 2.2.2) is used in [Angelova et al., 2007]

to classify terrain as belonging to one of many different classes (e.g. ‘sand,’ ‘soil,’ ‘mud,’

etc.). Features used include: average RGB colors, color histograms, and texture filters.

Classification is performed in image space, and separate meta-classifiers are used for the

near- and far-field. Training occurs off-line.

Our lab’s early work is presented in [Grudic et al., 2007]. This technique uses a collection

of histograms (section 2.2.5) to learn a mapping from near-field color and texture data

to ‘obstacle’ and ‘traversable’ classes in image space. A confidence in the prediction is

also provided, allowing the image to be labeled as ‘obstacle,’ ‘traversable,’ or ‘unknown.’

Features include normalized RGB color values and 1D histograms of non-normalized RGB

values over image patches. A single-class classifier35 is created per class. Each classifier uses

a 1D histogram of values from the first principal component of the training set. Note that

the training set matrix is transposed from its usual form for this calculation—each column

is a training example, and each row is a feature dimension. If a stereo disparity image sensor

labels an image patch as belonging to a particular class, but the associated patch vector is in

the null space of the training set basis, then the new vector is added to the training set. The

histograms are also updated such that labeled examples are always more likely to belong to

the appropriate class.

34Data recorded from an actual mission that is saved for off-line use. Log-files typically record all sensor readings
and may also contain initialization information necessary to duplicate the robot’s state at the beginning of the mission.

35e.g. the classifier answers the question: does a training example belong to a particular class c.

A two level classification method is used in [Halatci et al., 2007] to classify terrain (e.g. as

either ‘rock,’ ‘sand,’ or ‘mixed’). The lower level classifier is either a support vector machine

(section 2.2.1) or a Gaussian mixture model (section 2.2.2), and the high-level classifier is

simply a fusion of many low-level classifiers in a naive Bayesian framework. Each low level

classifier has an associated probabilistic belief per class, these are combined to yield an

overall class probability per image patch. Image space feature vectors include color, texture,

and range data.

A common trend among the aforementioned techniques is that supervised learning is used

in image-space to map either raw color intensity, texture, or both into one or more classes.

There are two general types of output class label: (1) outputs are representative of terrain

features types (lake, road, etc.), and (2) outputs represent a notion of traversability (obstacle,

traversable, unknown). When idea 1 is used, it is assumed that a ‘down-stream’ sub-system

will be able to use the terrain labellings to generate cost or that the labellings can otherwise

be used for path-search. With idea 2, the meta-sensor data can be used directly in the

representation for path-search. The latter fact has inspired us and others to perform path-

search directly in image-space [Otte et al., 2007,Ollis et al., 2008,Huang et al., 2009,Otte

et al., 2009].

The above techniques can also be grouped according to how/when they are trained. Training

possibilities include:

1. Off-line from human labeled data.

2. On-line using other sensors (self-supervised learning)

3. Off-line using other sensor data that has been recorded in log-files.

Off-line training allows a system to have access to mountains of data. It also removes most

time constraints. The main disadvantage of off-line training is that a model may not perform

well when the testing environment is not accurately reflected in the training examples. On-

line learning is more likely to train models that reflect the current state of the environment.

However, training must be done in real-time, which can limit the complexity of the model

being used. These issues are reflected by trends in the techniques described above. Methods

involving on-line training use simple models such as histograms and Adaboost [Happold et al.,

2006,Grudic et al., 2007,Konolige et al., 2006], while models trained off-line use more complex

models such as neural networks and cascades of Gaussians [Erkan et al., 2007,Angelova et al.,

2007, Jansen et al., 2005]. Standard Gaussian mixture models are used in both on-line and

off-line techniques; however, when used on-line they are either incorporated into a start-up

procedure that happens before the robot starts moving [Konolige et al., 2006] or are given

ample computational resources [Thrun et al., 2006].

3.2 Machine Learning in the Representation

When a cell-based metric map is cast as a connected graph for the purposes of graph-search

path-planning, it is expected that each edge has a cost associated with it.

sensor→ map−features→ cost→ path−search

In the previous section, I examined several techniques in which meta-sensors output class

labels such as ‘obstacle’ vs. ‘traversable terrain.’ For graph search, these correspond to cost

values of 1 and ∞, respectively. Meta-sensors may also output classes labels like ‘lake,’

‘field,’ and ‘road,’ for which a notion of cost is less obvious. In this section, I examine how

machine learning has been used to obtain cost from the latter type of class labels (as well as

other map features).

sensor→ features→ labels→ cost→ path−search

The mapping between sensor/map data and cost often involves two or three steps—for

instance, depth and color data from image space are mapped to height and vegetation data

in Cartesian space, which are then mapped to cost either directly or indirectly via class

labels.

sensor → image−features → image−classes → cartesian−features → cartesian−classes → cost → path−search

The particular information stored in a map is method dependent. It may include anything

from raw data (e.g. color, height, slope) to derived features (e.g. texture, obstacle proba-

bility). All of the methods described in this section assume that map features are stored in

a feature vector at each map grid. Depending on the method, training and test sets (used

for supervised learning) can either be constructed directly from image-space features, or by

projecting and accumulating this data in Cartesian space.

3.2.1 Supervised and Self-Supervised Learning in the Representation

[Happold et al., 2006] use a two step method to map color to cost via geometric features. A

neural network (section 2.2.3) is trained off-line from log-files and learns a non-parametric

function of geometric features in Cartesian space (e.g. height variation of points at a grid

location, terrain slope between mean grid values, etc.) to four different geometric cost classes.

Histogram methods are used on-line in image-space to learn a mapping from color to the

geometric classes. Class labels are provided from stereo disparity. This framework allows for

a stable geometric feature map to exist in parallel to changing notion of color vs. geometry.

While color features are generally per pixel, texture features are found over pixel sets. [Kim

et al., 2007] compare two different ways of creating these pixel sets, and evaluate the utility

of each when used in conjunction with the ‘hypersphere approximation’ algorithm they

developed (section 2.2.6). The two types of pixel sets are called pixel patches and superpixels.

The former are created by splitting the image into a grid of small square sub-regions. This

has the disadvantage of artificially grouping dissimilar parts of the image into a common

set. Superpixels, on the other hand, are created by over-segmenting an image, based on

the feature vectors it contains. This paper uses a version of the min-cuts algorithm for

over-segmentation [Shi and Malik, 2000]. Color and texture features include: the RGB and

HSV color spaces, histograms of Hue and Saturation, and 18 texture filters. Two classes are

defined (i.e. ‘obstacle’ and ‘ground’). However, uncertain labellings are not classified as one

or the other. Thus, the final labeling consists of ‘obstacle,’ ‘ground,’ and ‘unknown.’ Two

experiment are performed—the first involves manually labeled log-file data, and the second

uses stereo-labeled near-field data. Superpixels are found to outperform pixel patches in

both experiments.

[Erkan et al., 2007] use a two step method to learn a mapping from image appearance to three

classes (‘obstacle’, ‘traversable’, ‘occluded’), via a low dimensional texture representation. A

neural net (section 2.2.3), trained off-line from log-files, is used to extract low dimensional

texture features from normalized YUV space image patches. A ‘scaled image pyramid’ is also

used to normalize the image-space appearance of near- and far-field information. The texture

data is accumulated in a top-down Cartesian quad-tree map36, and a log-linear regression

model is trained on-line to map texture features to terrain classes. The texture values in

36A specific type of cell based map.

a given quad of the quad-tree are found by examining the ratios of all feature vectors that

have been placed in that particular quad.

[Angelova et al., 2007] use a hierarchical Gaussian mixture model (section 2.2.2) classify

terrain into one of many different classes (e.g. ‘sand,’ ‘soil,’ ‘mud,’ etc.). The hierarchy is

organized in a cascade of increasing GMM complexity, such that classifications achievable

with relatively few discriminating feature dimensions are applied first, followed by those

requiring an increasing number of feature dimensions. The idea here is to get as much

classification accomplished as easily as possible. The confusion matrix (obtained from test

data) is interpreted as a connected graph. The structure of the meta-classifier is recursively

determined by finding the min-cut of that graph. This breaks the original problem into

two sub-problems that can be solved independently. Features used include: average RGB

colors, color histograms, and texture filters. Classification is performed in image space, and

separate meta-classifiers are used for the near- and far-field. The resulting Cartesian map

is post-processed by neighborhood voting to minimize noise induced errors. Although not

stated in the paper, I believe that class labels are provided by a human expert.

Linear support vector machines (section 2.2.1) are used in conjunction with histogram meth-

ods in [Bajracharya et al., 2008] to learn a two-step mapping from color data to the classes

of ‘traversable’ and ‘obstacle’ terrain. Statistics are accumulated about terrain geometry in

a top-down Cartesian grid map. These feature vectors (one each per map cell) are classi-

fied as using a histogram model (section 2.2.5) that has been previously trained via expert

human tele-operation of the robot. The labellings provided by the histogram method are

also stored in a Cartesian map; however, they are used to label pixels in the current image.

This is done by following pointers from the top-down map back to the image-space pixels

that generated the geometric feature data. Next, an SVM is trained on the current image,

given the resulting image space labeling, and used to classify far-field terrain. The geometric

features accumulated in the top-down map include a combination of pixel color and 1D color

histograms over image patches.

3.2.2 Reinforcement Learning in the Representation

All of the methods described in the previous section have one thing in common: the mapping

between class label and cost must be defined by a human. One could speculate that this is

because, once the class of a map cell is known (e.g. lake vs. road), it is fairly straightforward

for a human to assign ‘common-sense’ cost values that will perform well in practice. On the

other hand, one could also make the argument that this limits a system and burdens a human

with the task of determining which classes and/or features are relevant for path-search.

In this subsection I examine two reinforcement learning approaches that can be used to obtain

a mapping from features and/or classes directly to map cost [Bagnell et al., 2006,Ratliff et al.,

2007].

sensor→ features→ cost→ path−search

The mathematical details of these two approaches are presented in sections 2.3.3 and 2.3.4,

respectively.

The training input is assumed to be a set of feature vector grid maps, along with a path

through each map provided by an expert. In both papers, the system’s policy is determined

by the actions of an optimal graph-search algorithm (section 1.5), assuming cost is defined

by a (learned) function over feature vectors. The policy is evaluated (and the cost-function

modified) based on how well the resulting path matches the expert provide example. Note

that this does not fit the standard reinforcement learning template. The policy itself is only

implicitly defined in terms of the cost function over features.

Specific feature vectors (i.e. xtrn
i) now exist at every node in the MDP. Further, a single

training instance includes an entire MDP (complete with feature vectors), along with the

‘correct’ transition probabilities at each state—as determined by an expert. In practice, the

expert draws an optimal path through the MDP, and the transition probabilities are defined

as a function of this path. For example, each node in the path has a probability of 1 of

transitioning to the next node in the path, and all other transition probabilities are 0.

The system attempts to find the mapping from feature vectors to rewards such that the

resulting behavior is similar to that of the expert. This is framed as the minimization of

a cumulative loss function that measures how far the system’s policy is from the expert’s,

and also posed according to the maximum margin framework. That is, optimal behavior

should be better than another solution by a margin that scales with the loss-function of the

latter solution. Once found, the mapping between features and cost is used on-line; however,

training must be performed off-line because it requires expert provided example paths. The

method also assumes the existence of a predefined metric to calculate reward/penalty based

on the difference between the expert’s path and an ‘optimal’ path given the system’s policy.

The authors of [Bagnell et al., 2006] perform experiments with two different types of input

feature-maps. The first is RGB color and the second is elevation. Although not stated in the

paper, the penalty function appears to resemble a 1D Gaussian curve at each cross-section of

the path, and cumulative penalty is used to rate a given policy. The path generated from the

system’s policy is found using the A* algorithm (section 1.5.6). Cost is a linear function of

feature vector components, and the learning algorithm attempts to find the optimal weighting

factor for each term.

The work of [Ratliff et al., 2007,Ratliff et al., 2009] build directly on [Bagnell et al., 2006].

The former extend the linear function of feature vector components of the latter by allowing

non-linear cost functions. Sub-gradient descent is used in a ‘space of cost functions’ as

opposed to the fixed linear parametrization of the earlier work.

The model is trained iteratively. At each iteration, a classifier is taught to distinguish

between features associated with: (1) parts of the expert path not visited by the system,

and (2) parts of the policy generated path that should not have been visited. Labellings from

this classifier are then added as an additional component to all feature vectors in the map.

This causes the system to actively focus it attention on areas of the map for which its ‘policy’

is incorrect. Terminal node classification trees are used as the classifier, and the algorithm is

limited to using a fixed number of trees. The authors present several experiments in which

their algorithm is shown to be effective. These include using RGB data, RGB data plus

height and slope data, and also the high dimensional C-space of a quadruped robot.

Although the ideas presented in this subsection do not eliminate the human involvement

entirely, they do change the human’s task from fiddling with low-level cost parameters to

providing high-level example paths of good behavior. This means that the human does not

need to know the low-level specifics of the features used in the representation (i.e. slope,

elevation, etc.), as long as they can can demonstrate a ‘good’ path. The main disadvantage

of these techniques is the requirement of a priori training examples and reward/punishment

functions. Obviously, this means that training examples are assumed to be similar to the

test environments the robot will operate in. On the other hand, one might argue that any

alternative supervised or reinforcement learning based system will also require some form of

training example that is assumed to be similar to the test case.

3.2.3 Machine Learning in Representation: Recap

I have talked about two general frameworks for using machine learning in the representation

subsystem of a robot. These are summarized as follows:

1. Supervised or self-supervised learning is used to obtain a mapping from sensor pro-

vided feature vectors to class labels. Map cost is assigned as a predefined function of

class label.

2. Reinforcement learning is used to obtain a function between map features and cost.

The cost function is constructed such that optimal graph-search paths through train-

ing maps are similar to expert provided examples.

In practice, both of these methods make assumptions about the problem domain. Method 2

assumes that maps exist of environments similar to the one in which the robot will be de-

ployed a priori. It also assumes that an expert has provided path examples through these

maps, and that a metric exists to evaluate the quality of agent created paths. Method 1

assumes that a means of distinguishing classes is available. With supervised learning, this

is accomplished via human-labeled training examples, while in self-supervised learning the

examples are provided by a ‘ground truth’ sensor—i.e. an instrument with the ability to

determine traversability regardless of environmental appearance (such as stereo vision or

lasers). Given known environmental features, both supervised and self-supervised learning

models can be trained off-line with human labeled data or with log-files. However, when mis-

sions are guaranteed to occur in completely unknown environments, on-line self-supervised

learning is the only option. Method 1 also assumes that a cost function over classes is

provided.

In principal, both frameworks 1 and 2 can be used in the same system at the same time,

although this has not yet been done in practice. Such a system might be organized as

follows: self-supervised learning finds a mapping from sensor features to class labels, while

reinforcement learning (trained off-line) calculates the function between class labels and cost.

In another configuration reinforcement learning might learn a function between geometric

features and cost off-line, and on-line self-supervised learning could be used to find the

mapping between image features and geometric features on-line. The latter is similar to

the methods outlined in [Happold et al., 2006] and [Erkan et al., 2007], both of which use

neural networks to learn a mapping between texture and class labels. Both of these currently

determine cost with a predefined function.

Regardless of how machine learning is used, there are a number of design decisions that

influence the architecture of the representation and planning subsystems. The first of these

is: in what coordinate space are the feature vectors accumulated and/or the models applied?

We have seen a variety of different ideas including:

1. The features are collected and the models applied in image space [Jansen et al.,

2005, Thrun et al., 2006, Konolige et al., 2006, Angelova et al., 2007, Grudic et al.,

2007,Halatci et al., 2007].

2. The features are collected and the models applied in Cartesian space [Bagnell et al.,

2006,Ratliff et al., 2007].

3. Features from image space are accumulated in Cartesian space, while models using

these features are applied in image space [Happold et al., 2006, Erkan et al., 2007,

Bajracharya et al., 2008].

Option 1 is most widely used for self-supervised learning because it operates in image space—

the native coordinate space of the training examples—and therefore minimizes projection

calculations and error. Option 2 has only been used for reinforcement learning; however, it

could potentially be used in other applications. Option 3 accounts for the fact that image

appearances change as a function of distance, but requires more overhead than either 1 or 2.

Another decision is: How will cost be determined? Again, there are a variety of approaches

that have been tried:

1. Appearance → class label → cost. [Jansen et al., 2005,Thrun et al., 2006,Konolige

et al., 2006,Angelova et al., 2007,Grudic et al., 2007,Halatci et al., 2007]

2. Appearance → class label → geometric features → cost. [Happold et al., 2006,Erkan

et al., 2007,Bajracharya et al., 2008]

3. (Appearance + geometric features) → cost. [Bagnell et al., 2006,Ratliff et al., 2007].

Methods that store geometric features (or classes based on geometric features) tend to do so

in a Cartesian map, while methods that do not use geometric features tend to store features

in image space. The reinforcement learning framework has not been applied in image space.

A final consideration is: to what degree can the model be trained off-line?

1. No off-line learning [Thrun et al., 2006,Konolige et al., 2006,Angelova et al., 2007,

Grudic et al., 2007,Halatci et al., 2007].

2. Partial off-line learning [Happold et al., 2006,Erkan et al., 2007,Bajracharya et al.,

2008].

3. Only off-line learning [Jansen et al., 2005,Bagnell et al., 2006,Ratliff et al., 2007].

Methods that use geometric features or classes based on them tend to learn these geometric

features off line. On-line learning is used to find the appearance vs. geometric relation-

ship. Techniques requiring human labeling must be performed off-line. In the papers I have

surveyed in this subsection, non-geometric self-supervised systems use only on-line learning.

3.3 Learning the Representation

Learning the representation (i.e. the representation itself) is a different problem than using

machine learning in the representation (previous subsection). In this subsection I will briefly

outline the former. In my opinion, most of this topic consists of the research body known

as simultaneous localization and mapping or SLAM [Smith et al., 1986]. The basic idea can

be summarized as follows: in the absence of robust localization sensor (e.g. GPS), a robot

in unknown terrain must relay on other observations to both: (1) construct a model of the

environment and (2) localize itself within this model. Most SLAM algorithms are applied in

either an outdoor field-robotic setting or on indoor mobile robots. In either case, the relative

positions of landmarks37, with respect to each other and/or the robot, are used to recover

the organization of the world.

From a path-planning point of view, SLAM is an alternative (or improvement) to a naive

GPS based mapping framework. One could even argue that SLAM is a meta-sensor that

periodically outputs the entire organization of the environment. Although parameters in

SLAM could probably be tweaked to affect the behavior of the path-planning component,

this is inadvisable. In general, a good SLAM algorithm is one that recreates the environment

as accurately (and quickly) as possible in the representation. This will allow the planning

system to make informed decisions—regardless of the planner’s implementation details, and

regardless of whatever type of information is contained in the representation. The field of

SLAM is quickly becoming mature and the body of literature is vast. Interested readers are

encouraged to study the survey by [Durrant-Whyte and Bailey, 2006].

Other forms of Learning the representation combine elements of SLAM with prior knowledge

about the structure of the environment. For instance, [Koenig and Simmons, 1996a,Koenig

and Simmons, 1996b] assume that a topological map of the world is provided a priori and use

a partially observable Markov decision process (section 1.6) to learn the distances between

states—effectively creating a metric topological map. As with SLAM, these methods are

primarily concerned about the accuracy of the environmental representation.

3.4 Machine Learning in the Planning Subsystem

Given that the name of this paper is ‘machine learning applied to robotic path-planning,’

one might expect this to be the largest section of the paper. This is not the case (although

it not the smallest either). Part of the reason for this, as discussed in section 1.4, is that

often the most direct way to modify the behavior of a planning system is to alter the data

in the representation. For example, it is relatively easy to apply black-box machine learn-

ing algorithms to the representation subsystem in order to generate more intelligent map

features—and thus facilitate better overall performance. In contrast, it is difficult to im-

prove the behavior of tried-and-true graph-search algorithms—especially when the latter

have theoretical guarantees on optimality, completeness, and convergence.

37Depending on the specific implementation ‘landmarks’ may consist of a variety of different things, their main
requirement is that robust and repeatable recognition is possible.

There are many important machine learning application in the greater planning system that

do not involve paths. Further, it is easy to confuse some of these other applications with

path-planning. For this reason, I begin this section with discussions on machine learning

applied to non-path-planning parts of the planning subsystem, before moving on to the

surprisingly few actual applications of machine learning in path-planning algorithms.

3.4.1 Reinforcement Learning for Non-Path-Planning Parts of the Planning

subsystem

Robotics is a natural application domain for Reinforcement learning, however reinforcement

learning is seldom applied to the path-planning sub-problem. I have included this section to

highlight where reinforcement learning has been applied elsewhere in the planning subsystem

for two reasons: (1) to address why reinforcement learning has not been more widely applied

in the narrow application of path-planning, and (2) to highlight other parts of the planning

subsystem where reinforcement learning has been embraced.

A robot is a natural parallel for the agent in reinforcement learning algorithms. Depending

on the ability of the system to accurately determine its location in the configuration space

via sensor readings, the world can either be represented as a Markov decision process or

as a partially observable Markov decision process (section 1.6). Finally, both robots and

agents are expected to perform actions in their respective worlds using whatever information

is available to them [Stronger and Stone, 2008]. In summary, it is straightforward to use

an MDP as the representation and then use reinforcement learning to train the robot at a

specific task.

In practice, the MDP is not always represented as a discrete graph, but instead allowed to

exist in continuous space. Actions affect the location of the robot in the continuous space

and lead to reward/punishment as normal. Alternatively, a continuous environment can

be discretized (section 1.2.4) in order to create a standard MDP. Regardless of the MDP’s

structure, the configuration space of the robot used to create the MDP tends not to be in

the form of an environmental map. Instead, it usually exists in the high dimensional space

of the system’s degrees-of-freedom.

The primary reason reinforcement learning has not been widely adopted for path-planing

is due to uncertainty about the consequences of one’s actions in an MDP. As previously

mentioned in section 1.6, this makes it impossible to generate a typical path-plan. In other

words, if the system is unsure of where it will end up after executing a particular action,

why should it waste effort trying to account for all possible alternatives? Path-like output

that can theoretically be generated about an MDP includes both the most-likely path and

a probability field denoting how likely any state is to be included in a path to the goal.

From a human’s perspective, the most-likely path basically provides the same sort of infor-

mation as a standard graph-path38. This is especially true when the robot is in a dynamic

and/or unknown environment. In these cases, even an optimal graph-path will probably

change as new information about the world is discovered during the mission. So, given this

inherent limitation, why not use reinforcement learning to find a most-likely path and then

use that for navigation?

The answer is that this is theoretically possible. However, The question itself is slightly

irrelevant. We need to take a step back, and examine the role that path-planning plays in

the larger robotic system. The only reason that the robot needed a path, in the first place,

was so that it could eventually reach the goal. Given a graph representation of the world,

this is done by creating a search-tree. When the search reaches the robot (staring from the

goal) then we have enough information to determine the ‘best’ way to get the robot to the

goal. Specifically, by moving along the path extracted by following back-pointers through

the graph. Alternatively, once the search-tree has grown to the robot’s current position, we

could just as easily move the robot locally using the information in the last branch of the

search-tree39 instead of explicitly extracting the entire path. Further, if we let the search-tree

expand to cover the entire graph, we could easily calculate the ‘optimal’ behavior at every

position in the C-space. This is akin to a reinforcement learning policy of actions over states.

Recall that a graph is essentially a MDP where the single consequence and reward of each

action occurs with probability 1 (section 1.6).

Reinforcement learning creates a policy that tells the system what the ‘best’ action is at any

given state. If the policy of the robot has been built with respect to a goal reaching problem,

then the robot will behave in such a way as to maximize its chances of reaching the goal.

38i.e. found using the graph-search techniques of section-1.5, and assuming a graph representation of the environ-
ment.

39Or in a ‘Lite’ algorithm, using one step of gradient descent over cost-to-goal or cost distance-to-gaol values.

Therefore, a path is not required when a standard reinforcement learning approach is used.

This, combined with the fact that any path through an MDP is only a ‘best guess’ at what

will actually happen, is why reinforcement learning is not generally used to extract complete

paths directly from an MDP.

Paths provide useful high-level information that a policy cannot. In model-free reinforcement

learning, the robot cannot communicate why it choses a specific action with respect to the

larger task (reaching the goal), only that it thinks it is a good choice. Model-based methods

can provide more information, but figuring out why the robot chose a particular action can

still be unclear. Because of this, it is easier for a human to evaluate a path (vs. policy) to

determine if the system is behaving intelligently or not. For example, it is difficult to evaluate

if a policy will keep the system in an infinite loop, but this is obvious when a path-plan is

available. Reinforcement learning also requires many training iterations per environment,

and standard methods require identical training and test environments40. The policy created

in one world might not (and probably will not) generalize well to new environments.

On the other hand, the ability to generalize to new environments is of little concern when

the robot lives in a finite world (e.g. a manipulator in a factory), and is trying to figure out

the best way to do something that will be repeated over-and-over. Also, most graph-search

path-planning algorithms do not have a principled way to deal with inherent uncertainty

in the structure of the graph. Many algorithms allow the structure of the graph or reward

functions to change from one deterministic configuration to another, as long as the graph and

actions are deterministic long enough to plan and execute actions (sections 1.5.7 - 1.5.13).

However, when the environment is inherently non-deterministic, reinforcement learning is

the better choice41.

It is also important to realize that achieving a goal is only one application of reinforcement

learning, which can also be used to accomplish many tasks that path-planning cannot. Po-

tential applications include problems with environmental dynamics too difficult to model

and tasks that cannot be defined as trying to reach a point in C-space (e.g. balancing a

stick). Therefore, more natural robotic applications of reinforcement learning include reac-

40The nonstandard reinforcement learning frameworks presented in sections 2.3.3 and 2.3.4 do not require identical
test and training environment; however, these methods do assume that training and test environments are similar.

41Reinforcement learning does assume the non-determinism is constant or ‘slowly changing’ (i.e. the probabilities
of consequences and rewards vs. actions don’t change [much] over time).

tive planning (see section 1.2) and inverse kinematics (section 1.3.2). I shall now give a few

examples of this type of work. Obviously, this is not an exhaustive survey.

In [Wheeler et al., 1992] Q-learning (section 2.3.1) is used to train an agent how to grip

an object—or modify its grip on an object. The idea is that certain manipulator planning

problems involve grasping an object in a way that does not interfere with the eventual

completion of the task. An analogy is drawn to toddlers grasping a spoon in order to

eat applesauce. If the toddler/robot places its grip around the bowl of the spoon, then

completing the task is impossible without an adjustment. The state space is a simple MDP

of the world and actions include ‘grasping,’ ‘swapping,’ and ‘insertion.

[Wiering et al., 1999] use a hybrid of CMACs [Albus, 1975] and prioritized sweeping (sec-

tion 2.3.2) to train a simulated soccer team consisting of 1 or 3 players. The C-space of the

model has 16 to 24 degrees-of-freedom, depending on the number of players, and including a

boolean vector indicating who is in possession of the ball. The states of an MDP are created

via a discretization of the C-space. The actions at each state include: ‘go-forward,’ ‘turn

to ball,’ ‘turn to goal,’ and ‘shoot.’ The authors find a favorable comparison between their

work and related previous work.

[Bagnell and Schneider, 2001] use reinforcement learning42 to train an autonomous helicopter

controller not to crash. The world is represented as a partially observable Markov decision

process. Related work by [Ng et al., 2003] enables a helicopter to hover in place and also

to perform a variety of competitive maneuvers taken from a radio controlled helicopter

competition. This is extended in [Ng et al., 2006] where the focus is on low-speed flight and

sustained inverted flight.

[Kohl and Stone, 2004] use policy gradient reinforcement learning [Sutton et al., 2000] to

train a Sony Aibo robot for fast locomotion. A continuous MDP over the C-space of the

robot is used. The robot is able to increase its speed from 245 millimeters per second (mm/s)

to 291 mm/s. [Fidelman and Stone, 2004] also use policy gradient reinforcement learning to

teach a Sony Aibo robot how to capture a miniature soccer ball. Results show that the robot

is able to increase the successful capture rate to 64% from a 36% capture rate obtained with

a human programmed controller.

42A model based policy learning method of their own design.

3.4.2 Supervised Learning for Non-Path-Planning Parts of the Planning

subsystem

This section is a continuation of the (incomplete) survey of machine learning applied to

reactive planning (see section 1.2) and inverse kinematics (section 1.3.2) that started at the

end of the previous section. This section focuses on supervised learning algorithms.

In [Gomez et al., 2006] neural nets (section 2.2.3) are used in a reactive control framework to

teach a robot how to balance a hinged pole on top of a wheeled cart. The cart itself exists on

a finite length of track. Four models were used for an experiment space spanning dimensions

for: (1) the number of poles (one and two), and (2) the observability of the environment

(complete vs incomplete state information). The authors find that, with regard to cpu

requirements, their idea compares favorably against 14 other machine learning methods

including various reinforcement learning approaches.

Recurrent neural networks (section 2.2.3) are used in [Mayer et al., 2006] to teach knot tying

to surgical suture robots. This problem is approached from an inverse kinematics point of

view. That is, given a set of known trajectories that the end of the string must follow to tie

a knot, how should the robot move based on its current configuration.

Neural networks (section 2.2.3) are also used for a different inverse kinematics problem

in [Grasemann et al., 2008]. This work focuses on enabling the Sony Aibo robot to follow a

desired trajectory through its C-space, despite an inaccurate model of how the PID controller

effects the actuators.

[Infantes et al., 2006] uses a Dynamic Bayes Net in conjunction with an expectation max-

imization algorithm to learn how parameters in the planning and representation systems

should be modified in response to environmental observations. The parameters include

things like obstacle radius and robot speed, while environmental observations include things

like geometry, how cluttered the environment is, and the minimum distance to the nearest

obstacle.

[Howard et al., 2006] use a supervised learning method of their own design to teach a robot

cost functions associated with the inverse-kinematics problem (section 1.3.2). That is, given

multiple C-space solutions that correspond to a specific path through the real-world, a cost

is used to determine which are more desirable than others.

A large (although somewhat dated) survey of genetic algorithms applied to reactive control

can be found in [Ram et al., 1994].

3.4.3 Learning and Task-Planning in Discrete Space

Task-planning43 is concerned with determining the sequence actions must be executed in to

accomplish a larger task. Often the actions are high level concepts such as ‘travel to location’

or ‘pick up object.’ There is a large body of work that focuses on training robotics systems

how to order tasks in this way [Billard et al., 2007]. Task-planning relies on other ideas such

as learning from demonstration, imitation learning, and human to robot skill transfer. Many

task-planning systems represent the state of the world as a connected graph. Actions are

represented by edges, and nodes correspond to word states. The idea is to ‘teach’ the robot

which path through the graph corresponds to accomplishing a specific task. It is easy to see

that this can be posed as a path-planning problem—which is why I have included it here.

In task-planning applications, the primary challenges include: (1) getting the system to know

what actions are available and (2) making the system understand which actions are involved

in a specific task. Problem 1 is often addressed by assuming the system has a preexisting

library of actions [Nicolescu and Mataric, 2003,Veeraraghavan and Veloso, 2008]. In some

systems, the library can be extended by explicitly showing the robot how to perform a

particular action [Chernova and Veloso, 2009]. Problem 2, getting the robot to recognize

which actions are involved in a larger task, has been accomplished in a variety of ways

including:

1. Passive observation of a human performing the task [Kuniyoshi et al., 1994].

2. Following a human as they perform the task [Rybski et al., 2007].

3. Interacting with a human as they perform the task [Nicolescu and Mataric, 2003,

Chernova and Veloso, 2009].

4. Listening to instructions given via human speech [Rybski et al., 2007].

43Task-planning is sometimes referred to as policy learning. In order to avoid confusion with with reinforcement
learning, I will not use the latter term.

sensing representation

planning

meta-sensor

human

task-planning actuation

Figure 12: How task-planning is used in a robotic system.

5. Human tele-operation of example tasks [van Lent and Laird, 2001].

Regardless, the robot must decide which parts of the example tasks can be broken down into

smaller primitive actions, and then how to string these actions together. Figure 12 displays

how task-planning fits into a theoretical robotic system.

It is important to realize that most of the ‘machine learning’ that takes place in these

systems consists of breaking a demonstrated task into pieces that can be encoded in a

symbolic language. Thus, in this domain the terms ‘learning’ and ‘planning’ are arguably

synonymous with ‘memorization’ and ‘regurgitation,’ respectively. In general, task-planning

systems can perform complex action sequences, as long as they receive a demonstration or

description of the sequence they are supposed to preform in advance. For this reason, these

methods are predominately used in applications that require an agent to perform a specific

task (or a set of similar tasks) over-and-over.

3.4.4 Learning and Task-Planning in Continuous Space

Techniques have been developed that extend task-planning ideas to continuous configuration

spaces. A common application involves teaching a manipulator the best C-space path to fol-

low, given a number of examples provided via human demonstration [Yeasin and Chaudhuri,

2000]. The most naive techniques are ‘memorize and regurgitate’ approaches, where the

system simply duplicates the example actions. More complex techniques may use a level

of abstraction between demonstrated behaviors and the underlying intent of the teacher.

For instance, [Calinon and Billard, 2007] uses a Hidden Markov Model [Baum and Petrie,

1966,Rabiner, 1989] over pose recognition in conjunction with the forward kinematics (sec-

tion 1.3.2) of a manipulator, enabling the system to move along paths demonstrated by a

human arm. The robot is able to duplicate tasks such as drawing on a white-board with a

marker.

More advanced systems use elements of machine learning to combine multiple examples into

a more robust understanding of the problem. For instance, when teaching manipulators

how to execute a specific task, [Calinon et al., 2007] first uses principle component analysis

[Pearson, 1901] to project the configuration space into a low-dimensional representation.

Next, Gaussian Mixture Regression [Sung, 2004] is used to estimate the probabilities that

points in this low dimensional projection are associated with the desired path. The most

likely path through the representation is used as the archetypal path for that task.

Note, however, that once a particular path is created, it is used without modification when-

ever that task is executed. Thus, path-planning does not happens on-line, but actually

occurs as a preprocessing step. Similarly, no autonomous path-planning occurs in systems

that simply reproduce human provided examples. Regardless, either type of approach is

useful when a system is expected to perform the same sequence of actions over-and-over, but

may not be the best option when the robot needs to extrapolate from examples to solve new

problems.

3.4.5 Reinforcement Learning for Path-Planning

In [Grudic et al., 2003] a POMDP (section 1.6) is used to model the world. At any state, the

mobile robot has three different path-planning ‘behavior’ actions it can choose from: follow

potential field, avoid obstacle, and recover from collision. The system is trained to switch

between these behaviors, based on the most-likely state the robot is in. The most-likely state

is calculated from the robot’s observations. Although machine learning is not used to create

the path, it is used to determine how the path will be created.

3.4.6 Other Machine Learning for Path-Planning

Recall that analytical solutions can be found to the path-planning problem when the rep-

resentation is a continuous C-space (section 1.2.4). Recent work has used support vector

machines (section 2.2.1) to find this analytical solution [Miura, 2006]. Note that, although a

machine learning algorithm is used, ‘learning’ is not being done in the classical sense. There

X

X

start

goal

class 1 virtual obstacles

class 2 virtual obstacles

class 1 obstacle

class 2 obstacle

Figure 13: A support vector machine is used to find an analytical path-planning solution

in continuous space. Points corresponding to class 1 and class 2 are white and black, re-

spectively. The algorithm requires that points from a particular obstacle are all associated

with the same class. It also requires virtual obstacles to be place around the start and goal

to constrain the ends of the path, and around the bounds of the environment to constrain

intermediate path points.

are no testing examples and the model itself is output as the path description.

Recall from section 2.2.1 that support vector machines seek to find a dividing surface that

maximally separates two classes. If the C-space is in two dimensions, then the dividing

surface is a curve. Note that this is precisely what we need to describe a continuous path

through a continuous C-space. Assuming we desire a path between the robot and goal that

avoids obstacles in a 2D configuration space, and assuming there are only two obstacles in

the world (and we have a set of points describing each of them), then SVM can be used for

path planning as follows:

1. Assign points from one of the obstacles to class 1 and points from the other obstacle

to class 2.

2. Set ‘virtual obstacles’ from both classes around the start and goal points (see Fig-

ure 13).

3. Set ‘virtual obstacles,’ from either class 1 or class 2, around the bounds of the envi-

ronment.

4. Train a support vector machine to separate the two classes.

The resulting model will contain a curve that travels from (about) the start to (about) the

goal while avoiding the obstacles44.

There are quite a few things that must be taken into consideration when using this method.

First, the ‘virtual obstacles’ around the start and goal are necessary to constrain the resulting

surface in such a way that it is useful to the problem. However, little discussion is provided

in [Miura, 2006] as to how this should be achieved. It seems clear that, in order for a linear

SVM to converge, the orientation of the virtual obstacles must respect the natural layout

of the two actual obstacles45. It is possible that this could be solved by placing ‘virtual

obstacles’ from both classes directly on the start and goal locations; however, this idea was

not addressed in [Miura, 2006]. Similar considerations must be addressed for the virtual

obstacles that define the bounds of the environment—which I assume are necessary to keep

the separating curve from ballooning outside the area of interest.

Another concern is what to do when more than two obstacles exist. The method presented

in [Miura, 2006] performs a number of searches, randomly assigning obstacles to either classes

during each search, and then choosing the overall path with minimal length. This seems

reasonable in environments that are mostly free space and/or contain convex obstacles, but

I believe that it would run into problems in maze-like environments. The authors vaguely

address these considerations by saying that an appropriate (e.g. non-linear) kernel function

could be used to change a hard problem into an easier one. However, it seems unlikely that

the specific kernel function needed to produce good behavior in a complex world could be

known a priori. The main selling point of the algorithm is that it can produce a continuous

path while using a geometric model of the world as input.

A 3D version of the algorithm is also presented. It requires planes of ‘virtual obstacles’

to exist around the start and goal and also at the world boundaries. It also requires an

additional step to deal with the fact that the learned model is now a surface, but a curve is
44Assuming that such a path is able to exist—i.e. the goal is not cut-off from the robot by obstacles.
45For instance, if the robot must travel west to the goal and obstacle class 1 is north of obstacle class 2, then the

virtual obstacles should be placed near the start and goal in such a way that class 1 is north of class 2.

required for a path. This is achieved by locally fitting a plane to the dividing surface where

the “plane is determined by searching the space of the pitch and the roll angles for the best

plane which minimizes the sum of the distances between the plane and the surface.” And

then “project[ing] the nominal line onto the plane and select[ing] a point on the projected

line” [Miura, 2006]. Which appears to suggest that only a discrete path can be found when

the C-space contains more than 2 dimensions.

Overall, I think this is a creative application of a machine learning algorithm to the path-

planning problem. However, it makes assumptions about obstacles that are only valid in

simple environments, and requires the placement of inconvenient ‘virtual obstacle’ points to

constrain the resulting models appropriately.

3.4.7 Machine Learning in the Planning System: Recap

I began this section with a discussion on the relationship between reinforcement learning

and path planning (section 3.4.1). The major points to remember are: (1) a reinforcement

learning policy serves the same purpose as path-planning, but the two are not the same

thing. (2) A policy deals with the nondeterministic nature of an MDP while a path operates

on a deterministic graph. (3) Although a policy may be implicitly influenced by global

information, it may not be able to communicate why—with respect to global information, it

made a certain local decision. Paths, on the other hand, are explicitly created with respect

to global information.

Section 3.4.1 concluded with an incomplete survey on how reinforcement learning has been

applied in non-path-planning parts of the planning system—specifically, for inverse kinemat-

ics and reactive planning. This survey was continued for supervised learning in section 3.4.2.

Section 3.4.3 focused on discrete task-planning in robotic systems. Task-planning occurs in

a graph where nodes are high-level task primitives (i.e. pick up block, move to door, etc.),

and the idea is to find a specific path through this graph that represents an entire high-

level task (i.e. build car, get products to Spain, etc.). Section 3.4.4 extended these ideas

to the actual continuous C-space used by the robot. System from both subsections rely on

human demonstration and perform more memorization than learning. The learning that

does occur happens as a preprocessing step, and the resulting paths are used repeatedly

without modification. Task-learning is useful because it allows a robot to be programmed

at a very high level—enabling even laymen to participate in human-to-robot skill transfer.

Section 3.4.5 looked at how reinforcement learning has been used to select which member

of a set of path-planners should be used, based on environmental observations. The various

path-planners interact as the path is being created. Another way of interpreting this work is

that the MDP is actually deterministic (i.e. a weighted graph), and reinforcement learning

is used to pick a best-first-search rule at every step of a best-first search.

I finished with a discussion on how support vector machines have been used to generate an

analytical solution to the path-planning problem in continuous space (section 3.4.6). The

method is theoretically interesting, because it allows a continuous path to be found through

a geometric model of the environment. However, its use may be limited to relatively simple

environments.

4 Conclusions

I have surveyed a collection of cutting-edge applications of machine learning to robotic path-

planning and path-planning related concepts. Chapter 1 presented a high-level overview

of a robotic system, with a focus on the representation and planning subsystems (sections

1.2-1.6). An in-depth survey of graph-search algorithms was also included in section 1.5.

Chapter 2 provided a high-level overview of machine learning, with a focus on supervised

learning and reinforcement learning (section 2.1). A handful of specific algorithms were

also discussed (sections 2.2-2.3). Chapter 3 looked at specific ways machine learning has

been used in robotic systems, with a focus on concepts directly related to path-planning.

Particular attention was given to machine learning in the following areas:

1. meta-sensors (section 3.1).

2. representation data (section 3.2).

3. representation structure (section 3.3).

4. inverse kinematics and reactive planning (sections 3.4.1 and 3.4.2).

5. discrete and continuous task-planning (sections 3.4.3 and 3.4.4).

6. path-planning algorithms (sections 3.4.5 and 3.4.6).

Machine learning can be applied at many different places in the robot system, and there

is no standard way it is used for path-planning. Although machine learning has been used

inside path-planning algorithms themselves, this idea has not yet been widely embraced.

Much of the reason for this is that many graph-search algorithms provide optimal or near-

optimal solutions with respect to the representation. Thus, as the representation becomes

more accurate with respect to the environment, graph search can produce solutions that are

optimal or near-optimal with respect to the real-world. In practice, most designers have

opted to embrace graph-search, and then use machine learning to make the representation

and sensing subsystems more intelligent—indirectly improving path-planning with respect

to the real-world.

Machine learning has been used in the representation and sensing subsystems to create meta-

sensors that provide the system with more useful information about the environment than

raw sensor data and/or map features. Other ideas have focused on training a graph-search

cost-function from expert provided examples. Finally, the accuracy of the representation

itself can be improved by calculating the most likely organization, given sensor observations.

The idea of task-planning is similar to path-planning, except that discrete paths represent

complete task sequences built from high-level task primitives. C-space paths are also used,

but rely on human demonstration and cannot be used to infer the correct behavior for

never-before-seen tasks. All of the learning that takes place in task-planning happens in a

preprocessing step, and paths are not modified on-line.

Classical reinforcement learning is a machine learning native path-planning alternative that

excels in nondeterministic environments. It is often used in the planning system in the

context of a reactive planner or inverse kinematics. A reinforcement learning policy serves

the same function as a path-planning path—both allow the robot to decide what its next

action should be, given its state. However, reinforcement learning can be used for tasks

that have other goals than those defined by a C-space coordinate. On the other hand,

reinforcement learning requires a relatively large amount of training time to learn a policy

for a specific environment. Therefore, it is used more for systems that are destined to live in

a known static environment. Path-planning is better equipped to handle unknown and/or

changing environments, but assumes that actions are deterministic. It also has the ability

to explicitly communicate how local behavior fits into a long-term goal-directed plan.

References

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations of the

potential function method in pattern recognition learning. Automation and Remote

Control, 25:821–837.

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model articula-

tion controller (cmac). Dynamic Systems, Measurement and Control, pages 220–227.

Angelova, A., Matthies, L., Helmick, D., and Perona, P. (2007). Fast terrain classification

using variable-length representation for autonomous navigation. In Computer Vision

and Pattern Recognition.

Bagnell, J. A., Ratliff, N. D., and Zinkevich, M. A. (2006). Maximum margin planning. In

International Conference on Machine Learning.

Bagnell, J. A. and Schneider, J. G. (2001). Autonomous helicopter control using reinforce-

ment learning policy search methods. In Proceedings of International Conference on

Intelligent Robotics and Automation.

Bajracharya, M., Tang, B., Howard, A., Turmon, M., and Mathies, L. (2008). Learning

long-range terrain classification for autonomous navigation. In International Conference

on Intelligent Robots and Automation, pages 4018–4024.

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite

state markov chains. Annals of Mathematics and Statistics, 37:1554–1563.

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechanics,

6.

Bellotto, N. and Hu, H. (2009). Multisensor-based human detection and tracking for mobile

service robots. IEEE Transactions on Systems, Man, and Cybernetics, 39:167–181.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2007). Handbook of Robotics: Chapter

59, Robot Programming By Demonstration. MIT Press, Cambridge, MA.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press, Cam-

bridge, MA.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2:121–167.

Calinon, S. and Billard, A. (2007). Learning of gestures by imitation in a humanoid robot.

In Imitation and Social Learning in Robots, Humans, and Animals:Behavioural, Social

and Communicative Dimensions, pages 153–177.

Calinon, S., Guenter, F., and Billard, A. (2007). On learning, representing and generalizing

a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics,

Part B, 37:286–298.

Carsten, J., Rankin, A., Ferguson, D., and Stentz, A. (2007). Global path planning on board

the mars exploration rovers. In IEEE Aerospace Conference.

Chernova, S. and Veloso, M. (2009). Interactive policy learning through confidence-based

autonomy. Journal of Artificial Intelligence Research, 34:1–25.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algo-

rithms. MIT Press, Cambtidge, MA.

Davis, H., Bramanti-Gregor, A., and Wang, J. (1988). The advantages of using depth and

breadth components in heuristic search. Methodologies for intelligent systems, 3:19–28.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. In Numererical

Mathematics, volume 1, pages 269–271.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping (slam):

Part i the essential algorithms. Robotics and Automation Magazine, 13:99–110.

Erkan, A. N., Hadsell, R., Sermanet, P., Ben, J., Muller, U., and LeCun, Y. (2007). Adaptive

long range vision in unstructured terrain. In International Conference on Intelligent

Robots and Systems, pages 2421–2426.

Featherstone, R. (2007). Rigid Body Dynamics Algorithms. Springer.

Ferguson, D., Kalra, N., and Stentz, A. (2006). Replanning with rrts. In IEEE International

Conference on Robotics and Automation.

Ferguson, D. and Stentz, A. (2006a). Anytime rrts. In Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 5369–5375.

Ferguson, D. and Stentz, A. (2006b). Using interpolation to improve path planning: The

field d* algorithm. Journal of Field Robotics, 23:79–101.

Ferguson, D. and Stentz, A. (2007). Anytime, dynamic planning in high-dimensional search

spaces. In Proc. IEEE International Conference on Robotics and Automation, pages

1310–1315.

Fidelman, P. and Stone, P. (2004). Learning ball acquisition on a physical robot. Interna-

tional Symposium on Robotics and Automation.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55.

Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence, 15.

Goldberg, S. B., Maimone, M. W., and Matthies, L. (2002). Stereo vision and rover naviga-

tion software for planetory exploration. In IEEE Aerospace Conference Proceedings, Big

Sky, MT, USA.

Gomez, F., Schmidhuber, J., and Miikkulainen, R. (2006). Efficient non-lenear control

through neuroevolution. In Proceedings of the European Conference on Machine Learn-

ing.

Grasemann, U., Stronger, D., and Stone, P. (2008). A neural network-based approach to

robot motion control. In RoboCup 2007: Robot Soccer World Cup XI, pages 480–487.

Grudic, G., Mulligan, J., Otte, M., and Bates, A. (2007). Online learning of multiple

perceptual models for navigation in unknown terrain. In International Conference on

Field and Service Robotics (FSR’07), Chamonix, France.

Grudic, G. Z., Kumar, V., and Ungar, L. (2003). Using policy gradient reinforcement learn-

ing on autonomous robot controllers. In Proceedings of International Conference on

Intelligent Robots and Systems.

Gurney, K. (1997). An Introduction to Neural Networks. Routledge, London.

Halatci, I., Brooks, C. A., and Iagnemma, K. (2007). Terrain classification and classifier

fusion for planetary exploration rovers. In IEEE Aerospace Conference.

Hansen, E. A. and Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelli-

gence Research, 28:267–297.

Happold, M., Ollis, M., and Johnson, N. (2006). Enhancing supervised terrain classification

with predictive unsupervised learning. In Robotics: Science and Systems.

Haritaoglu, I., Harwood, D., and Davis, L. S. (1998). W4w: A real-time system for detection

and tracking people in 2.5d. Lecture Notes in Computer Science, 1406/1998:877.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determination

of minimum cost paths. In Proc. IEEE Transactions On System Science and Cybernetics

(SSC-4), pages 100–107.

Hellerstein, J. L., Tilbury, D. M., and Parekh, S. (2004). Feedback Control of Computing

Sustems. John Wiley and Sons.

Howard, M., Gienger, M., Goerick, C., and Vijayakumar, S. (2006). Learning utility surfaces

for movement selection. In Proceedings of the IEEE International Conference on Robotics

and Biomimetics.

Huang, W. H., Ollis, M., Happold, M., and Stancil, B. A. (2009). Image-based path planning

for outdoor mobile robots. Journal of Field Robotics, 26:196–211.

Infantes, G., Ingrand, F., and Ghallab, M. (2006). Learning behaviors models for robot

execution control. In Proceedings of European Conference on Artificial Intelligence.

Jansen, P., van der Mark, W., van den Heuvel, J. C., and Groen, F. C. (2005). Colour based

off-road environment and terrain type classification. In IEEE Conference on Intelligent

Transportation Systems.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4:237–285.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82:35–45.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The

International Journal of Robotics Research, 5(1):90–98.

Kim, D., Oh, S. M., and Rehg, J. M. (2007). Traversability classification for ugv navigation:

A comparison of patch and superpixel representations. In International Conference on

Intelligent Robots and Systems, pages 3166–3173.

Kltagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state space

models. Journal of Computational and Graphical Statistics, 5:1–25.

Koenig, S. and Likhachev, M. (2002). Improved fast replanning for robot navigation in

unknown terrain. In Proc. IEEE International Conference on Robotics and Automation

(ICRA’02).

Koenig, S. and Simmons, R. G. (1996a). Passive distance learning for robot navigation.

In Proceedings of the Thirteenth International Conference on Machine Learning, pages

266–274.

Koenig, S. and Simmons, R. G. (1996b). Unsupervised learning of probabilistic models for

robot navigation. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2301–2308.

Kohl, N. and Stone, P. (2004). Policy gradient reinforcement learning for fast quadrupedal

locomotiont.

Konolige, K., Agrawal, M., Bolles, R. C., Cowan, C., Fischler, M., and Gerkey, B. (2006).

Outdoor mapping and navigation using stereo vision. In Experimental Robotics: The

10th International Symposium, pages 179–190.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent limitations

for mobile robot navigation. In Proc. IEEE International Conference on Robotics and

Automation (ICRA’91).

Kuniyoshi, Y., Inaba, M., and Inoue, H. (1994). Learning by watching: Extracting reusable

task knowledge from visual observation of human performance. IEEE Transactions on

Robotics and Automation, 10:799–822.

Latombe, J.-C. (1999). Motion planning: A journey of robots, molecules, digital actors and

other artifacts. In The International Journal of Robotics Research, volume 18, pages

1119–1128.

LaValle, S. and Keffner, J. (2001). Rapidly-exploring random trees: Progress and prospects.

In Algorithmic and Computational Robotics: New Directions, pages 293–308.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge.

Lee, D. C. (1996). The Map-Building and Exploration Strategies of a Simple Sonar-Equipped

Mobile Robot. Cambridge University Press, New York.

Likhachev, M. and Koenig, S. (2001). Incremental a*. In Proceedings of the Neural Infor-

mation Processing Systems.

Lozano-Perez, T. (1983). Spatial planning: A configuration approach. In IEEE Transactions

on Computers, volume C-32, pages 108–120.

Lugosi, G. and Nobel, A. (1996). Consistency of data-driven histogram methods for density

estimation and classification. Annals of Statistics, 24:687–706.

Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., and Schmidhuber, J. (2006). A

system for robotic heart surgery that learns to tie knots using recurrent neural networks.

In Proceedings of the International Conference on Intelligent Robotics and Systems.

McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to

Clustering. Marcel Dekker.

Minguez, J. and Montano, L. (2004). Nearness diagram (nd) collision avoidance in trouble-

some scenarios. IEEE Transactions On Robotics and Automation, 20:45–59.

Miura, J. (2006). Support vector path planning. In Proceedings of International Conference

on Intelligent Robots and Systems.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with

less data and less real time. Machine Learning, 13:103–130.

Murray, D. and Little, J. (1998). Using real-time stereo vision for mobile robot navigation. In

Proc. of the IEEE Workshop on Perception for Mobile Agents, Santa Barbara, California.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., and Liang, E.

(2006). Autonomous Inverted Helicoptor Flight via Reinforcement Learning, volume 21.

Ng, A. Y., Kim, H. J., Jordan, M. I., and Sastry, S. (2003). Autonomous helicoptor flight

via reinforcement learning. In Advances in Neural Information Processing Systems.

Nicolescu, M. N. and Mataric, M. J. (2003). Natural methods for robot task learning:

Instructive demonstrations, generalization and practice. In Proceedings of the Second

International Joint Conference on Autonomous Agents and Multi-Agent Systems.

Nobel, A. and Lugosi, G. (1994). Histogram classification using vector quantization. Pro-

ceedings of International Symposium on Information Theory, page 391.

Ollis, M., Huang, W. H., and Happold, M. (2007). A bayesian approach to imitation learning

for robot navigation. In Proceedings of the IEEE International Conference on Intelligent

Robots and Systems, page 714.

Ollis, M., Huang, W. H., Happold, M., and Stancil, B. A. (2008). Image-based path planning

for outdoor mobile robots. In Proc. IEEE International Conference on Robotics and

Automation (ICRA’08).

Otte, M., Richardson, S., Mulligan, J., and Grudic, G. (2007). Local path planning in image

space for autonomous robot navigation in unstructured environments. In International

Conference on Intelligent Robots and Systems (IROS’07), San Diego.

Otte, M., Richardson, S., Mulligan, J., and Grudic, G. (2009). Path planning in image

space for autonomous robot navigation in unstructured environments. Journal of Field

Robotics, 26:212–240.

Parker, R., Hoff, W., Norton, V., Lee, J. Y., and Colagrosso, M. (2005). Activity identifi-

cation and visualization. In Proceedings of the Fifth International Workshop on Pattern

Recognition and in Information Systems, pages 124–133.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philo-

sophical Magazine, 2.

Philippsen, R. (2006). A light formulation of the E* interpolated path replanner. Autonomous

Systems Lab, Ecole Polytechnique Federale de Lausanne.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected pplications in speech

recognition. Proceedings of the IEEE, 77:124–133.

Ram, A., Arkin, R., Boone, G., and Pearce, M. (1994). Using genetic algorithms to learn

reactive control parameters for autonomous navigation. Adaptive Behavior, 2:277–304.

Ratliff, N. D., Bradley, D., Bagnell, J. A., and Chestnutt, J. (2007). Boosting structured

prediction for imitation learning. In Advances in Neural Information Processing Systems.

Ratliff, N. D., Silver, D., and Bagnell, J. A. (2009). Learning to search: Functional gradient

techniques for imitation learning. In Submitted to: Autonomous Robotics Special Issue

on Robot Learning.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books.

Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural network-based face detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:23–38.

Rybski, P. E., Yoon, K., Stolarz, J., and Veloso, M. M. (2007). Interactive robot task train-

ing through dialog and demonstration. In Proceedings of the ACM/IEEE International

Conference on Human-Robot Interaction, pages 49–56.

Schrodinger, E. (1935). Die gegenwartige situation in der quantenmechanik. Naturwis-

senschaften, 23.

Sethian, J. A. (1996). A fast marching level-set method for monotonically advancing fronts.

Proc. Nat. Acad. Sci., 93:1591–1595.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and MAchine Intelligence, 22:888–905.

Smith, R., Self, M., and Cheeseman, P. (1986). Estimating uncertain spatial relationships

in robotics. In Proceedings of the Second Annual Conference on Uncertainty in Artificial

Intelligence, pages 435–461.

Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In

Proc. IEEE International Conference on Robotics and Automation (ICRA’94).

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proc. of the

International Joint Conference on Artificial Intelligence (IJCAI).

Stronger, D. and Stone, P. (2008). Maximum likelihood estimation of sensor and action

model functions on a mobile robot. In Proceedings of the IEEE International Conference

on Robotics and Automation.

Sung, H. G. (2004). Gaussian Mixture Regression and Classification. Ph.D Thesis, Rice

University, Huston Texas.

Sutton, R., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for

reinforcement learning with functional approximation. Advances in Neural Information

Processing Systems, 12:1057–1063.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale,

J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stag, P.,

Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van

Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davis, B., Ettinger, S., Kaehler, A.,

and Mahoney, A. N. P. (2006). Stanley: The robot that won the darpa grand challenge.

Journal of Field Robotics, 23:661–692.

van Lent, M. and Laird, J. E. (2001). Learning procedural knowledge through observation. In

Proceedings of the 1st International Conference on Knowledge Capture, pages 179–186.

Veeraraghavan, H. and Veloso, M. (2008). Teaching sequential tasks with repetition through

demonstration. In Proceedings of the 7th International Conference on Autonomous

Agents and Multiagent Systems.

Watkins, C. J. H. C. (1989). Learning from Delayed Rewards. Ph.D Thesis, King’s College,

Cambridge, UK.

Watkins, C. J. H. C. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Wheeler, D. S., Fagg, A. H., and Grupen, R. A. (1992). Learning prospective pick and place

behavior. In Proceedings of the International Conference on Development and Learning.

Wiering, M., Salustowicz, R., and Schmidhuber, J. (1999). Reinforcement learning soccer

teams with incomplete world models. Journal of Autonomous Robots.

Yeasin, M. and Chaudhuri, S. (2000). Toward automatic robot programming: Learning

human skill from visual data. In Proceedings of IEEE Transactions on Systems, Man,

and Cybernetics, volume 30, pages 180–185.

