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Abstract13

Automata theory provides us with fundamental notions such as languages, membership, emptiness and14

inclusion that in turn allow us to specify and verify properties of reactive systems in a useful manner.15

However, these notions all yield “yes”/“no” answers that sometimes fall short of being satisfactory16

answers when the models being analyzed are imperfect, and the observations made are prone to errors.17

To address this issue, a common engineering approach is not just to verify that a system satisfies a18

property, but whether it does so robustly. We present notions of robustness that place a metric on words,19

thus providing a natural notion of distance between words. Such ametric naturally leads to a topological20

neighborhood of words and languages, leading to quantitative and robust versions of the membership,21

emptiness and inclusion problems. More generally, we consider weighted transducers to model the cost22

of errors. Such a transducer models neighborhoods of words by providing the cost of rewriting a word23

into another. The main contribution of this work is to study robustness verification problems in the con-24

text of weighted transducers. We provide algorithms for solving the robust and quantitative versions of25

themembership and inclusion problems while providing useful motivating case studies including approx-26

imate pattern matching problems to detect clinically relevant events in a large type-1 diabetes dataset.27
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1 Introduction39

Automata theoretic verification commonly uses an automaton S to specify the behaviors of40

a system being analyzed and another automaton P to specify the property of interest. These41

automata are assumed to be finite state machines accepting finite or infinite words. The key42

step is to verify whether the language inclusion L(S)⊆L(P ) holds. Failing this inclusion, a43

counterexample σ is generated such that σ∈L(S) whereas σ 6∈L(P ). Another important area44
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lies in runtime verification, wherein given a sequence of observations represented by σ∈Σ∗, we45

wish to check whether these observations satisfy the specification: σ∈L(P ). The verification46

community has considered numerous extensions to these basic ideas such as richer models of the47

systemS that allow for succinct specifications (e.g., hierarchical statemachines, state-charts), or48

go beyond finite statemachines and include features such as real-time (timed automata) [4], phys-49

ical quantities (hybrid automata) [3], and matching calls/returns [8, 23, 6]. The complexity of50

the language inclusion and membership problems in these settings are also well understood [11].51

However, inclusion and membership problems lead to yes/no Boolean answers. The no52

answer for an inclusion problem is witnessed by a counterexample trace. However, the yes53

answer provides nothing further. A quantitative approach to these questions was proposed54

independently by Fainekos et al. [16], Donze et al. [14] and Rizk et al. [21] for the satisfaction55

of metric/signal temporal logic formula ϕ for a trace σ generated by continuous and hybrid56

systems. Therein, the authors use the euclidean metric over real-valued traces that defines57

a metric distance d(σ,σ′) between traces σ,σ′ in order to check whether traces that are in the58

epsilon neighborhood of a given trace σ also satisfy the formula: (∀σ′) d(σ,σ′)<ε ⇒ σ′ |=ϕ.59

Recent work, notably by Hasuo et al [24, 1] and Deshmukh et al [12] generalizes these notions to60

time domain as well as the signal data domain. Efficient algorithms for computing the robust-61

ness of a trace with respect to metric (signal) temporal formulas are known, and furthermore,62

the theory led to numerous approaches to finding falsifications of complex Simulink/Stateflow63

models, mining robust requirements and other monitoring problems [7].64

Robustness Using Weighted Transducers. In this paper, we specify distances between65

finite words over Σ∗, using the notion of cost functions. A cost function assigns a non-negative66

rational cost to each pair of words (w1,w2)∈Σ∗×Σ∗, modelling the cost of rewriting w1 into67

w2. By bounding the costs of rewritings, it models how words can be transformed. As a result,68

a neighborhood can be defined for each word, assuming that the cost of “rewriting” a word69

w back to itself is 0. This, in turn, allows to reason about robustness of languages. In order to70

model cost functions, we use weighted transducers with non-negative weights [15] along with an71

aggregator that combines the cost of each individual rewriting of the transducer into an overall72

cost between the input and output words. We now provide motivating examples for the cost73

functions that can be specified by such a model. A formal definition is provided in Section 2.74

T

q0 q1 q2

a1 |a1, 0
a2 |a2, 0 a1 |a1, 0

a2 |b, 1

a1 |a1, 0
a2 |b, 1

a1 |a1, 0
a2 |a2, 0

a1 |a1, 0
a2 |a2, 0

Figure 1 A weighted-transducer over Σ={a1,a2,b}

Motivating Example. Consider75

the transducer T of Figure 1. This76

transducer is over alphabet Σ :77

{a1,a2,b}. It allows to rewrite the78

letter a1 into a1 (at cost 0), and79

the letter a2 into either a2 (at cost80

0) or b (at cost 1). Additionally,81

these rewritings are possible only82

at state q1. This allows us to have83

a model wherein errors appear in84

bursts rather than individually: I.e, an error at a location increases the likelihood of one at85

the subsequent location. Thus, the transducer models all possible words w′ that a given input86

word w can be rewritten into. As an example, the word w :a1a2a2a2 into w′ :a1bba2 through87

transitions that rewrite the first two occurrences of a2 into b. At the same time, the transducer88

forbids certain rewritings. For instance, the word w above cannot be rewritten into the word89

w′′ :bba2a1 since the rewrite from an a1 into a b or an a2 into an a1 is clearly disallowed by the90

transducer T in Figure 1.91

While the transducer T specifies the cost for individual rewritings through its transitions,92
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we define the cost of rewriting the entire word w into another w′ by additionally specifying an93

aggregator function. For simplicity, we assume that there is exactly one run of the transducer94

that rewrites w into w′. The case of nondeterministic transducers is defined in Section 2.95

1. Discounted Sum (DSum): Given a discount factor λ∈Q∩(0,1), the cost of rewriting a word96

w into another word w′ is defined as
∑n
i=1λ

(i−1)τi, wherein n is the size of a run through97

the transducer and τi is the cost associated with the ith transition.98

2. Average (Mean): This aggregator computes the mean cost: 1
n

∑n
i=1τi for n>0.99

3. Sum (Sum): This aggregator computes the sum:
∑n
i=1τi for n>0.100

Returning to our example, the Sum-cost of rewriting a1a2a2a2 into a1bba2 is 2, for the101

DSum-cost with discount factor 1/2, it is 3/4, and for Mean-cost it is 1/2.102

Our approach handles a more general nondeterministic transducer model that can allow103

for insertions of new letters, deletion of letters, transpositions and arbitrary substitutions of104

one letter by a finite word. Cost functions defined by such transducers may not satisfy the105

axioms of a metric, however many commonly encountered type of metrics between words106

such as the Cantor distance and the Levenstein (or edit) distance can be modeled as weighted107

transducers [13]. For example, edit distance is naturally modelled by a sum-transducer. Cantor108

distance maps any pair of word (w1,w2) of same length to 2−i where i the first position where109

w1 and w2 differ, and to 0 if w1 = w2. This metric can be modelled by a discounted-sum110

transducer with discount factor 1/2.111

Robustness problems. Given a cost function c : (Σ∗×Σ∗)→Q≥0 defined by a weighted-112

transducer with an aggregator function, we can define “neighborhoods” of languages for a113

given distance ν≥0. For a regular language N⊆Σ∗ and a threshold ν∈Q≥0, let us define its114

ν-neighborhood Nν : {w′∈Σ∗ | (∃w∈N) c(w,w′)≤ν}. Given a property L⊆Σ∗, we consider115

the following robustness problems:116

Robust inclusion: Given N,ν and L, check whether Nν⊆L.117

Threshold synthesis: Given N,L, find the largest threshold ν such that Nν⊆L.118

Robust kernel synthesis: given N,ν,L, find the largestM⊆N s.t. Mν⊆L.119

I Example 1. Consider the transducer of Figure 1 using the the Sum aggregator. We take L120

as the set of words which does not have bbb as a subword. Now, any word of the form (a1a2)∗121

are ν-robust for any threshold ν since the letter a1 is not rewritten by the transducer T . Such122

questions are tackled using the robust inclusion problem. On the other hand, let us choose123

a word w ∈ a2a2a2(a∗1). It is ν-robust for all the thresholds ν ≤ 2 but not for ν ≥ 3. This is124

determined using the threshold synthesis problem. For all ν≥3, the set of ν-robust words in125

N=Σ∗ is (a1+a1a2+a1a2a2)∗, and for ν≤2, any word in Σ∗ is ν-robust. Such questions are126

solved using the robust kernel synthesis problem.127

Contributions. We show that the robust inclusion problem is solvable in PTime when N128

and L are regular languages (given as NFA and DFA respectively) and the weighted-transducer129

defining the cost function is also given as input (Corollary 12). To obtain this result, we show130

that we can effectively compute in PTime the largest threshold ν as defined before, thus solving131

the threshold synthesis problem (Theorem 11). This result holds for the three measures Sum,132

DSum and Mean. For Sum, we show that the robust kernel is effectively regular (Lemma 14)133

and testing its non-emptiness is PSpace-complete (Theorem 15). For Mean, we show that134

the robust kernel is not regular in general (Lemma 16), and its non-emptiness is undecidable135

(Theorem 17). For DSum, we leave those questions partially open. We conjecture that the136

robust kernel is non-regular in general and provide a sufficient condition under which it is137

regular (Theorem 22).138
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Next, we present an implementation of the algorithms to synthesize robustness thresholds139

and report some experiments with our implementation, illustrating its application to analyzing140

manual control strategies under the presence of human error and approximate pattern analysis141

in type-1 diabetes data. Here we analyze a publicly available dataset of blood glucose values142

for people with type-1 diabetes. In both cases, we use a weighted transducer to model some143

of the specifics of human error and glucose sensor noise patterns. For the type-1 diabetes144

application, we use a robust pattern matching to detect behaviors that are clinically significant145

while accounting for the peculiarities of the glucose sensor.146

Our work bears some similarities with earlier work by Henzinger et al [17, 22]. In these147

papers, notions of robustness for string to string transformations are studied and the notion148

of continuity of these transformations is defined. This is different from our setting, in which149

we use weighted transducers to define notions of distances, and these transducers are not150

necessarily continuous. Our notion of robustness is with respect to the rewriting of the words151

of one language and not about the transducers. The transducers themselves serve to define152

neighborhoods of strings.153

2 Preliminaries and Problem Statements154

Let Σ be an alphabet. We denote the empty word by the symbol ε 6∈Σ and we write Σ∗ for155

the set of finite words over Σ. Let Σε=Σ∪{ε}. As usual, we write Q for the set of rationals,156

N={0,1,...} for naturals, and N∗ for the words over the infinite alphabet N.157

A finite automaton over Σ is a tuple A=(Q,QI ,QF ,∆) where Q is the finite set of states,158

QI⊆Q is the set of initial states, QF ⊆Q is the set of final states and ∆⊆Q×Σ×Q is the set of159

transitions. A run r of A over a word u=a1...an∈Σ∗ of length n>0 is a sequence of transitions160

t1...tn∈∆∗ such that there exist q0,q1,...,qn and for all 1≤ i≤n, ti=(qi−1,ai,qi). The run r is161

simple if no state repeats along r, i.e. i 6=j implies that qi 6=qj and, it is a cycle if q0 =qn. We162

say that r is a simple cycle if its a cycle and t2...tn is simple. Also, r is accepting if it starts163

from an initial state q0∈QI and ends into a final state qn∈QF . We denote by AccRunA(u)164

the set of accepting runs of A on the word u. The language defined by A is the set of words165

L(A)={u |AccRunA(u) 6=∅}. The automaton A is called deterministic (DFA for short) if QI166

is a singleton and ∆ is a function from Q×Σ to Q. We define the representation size of an167

automaton A=(Q,QI ,QF ,∆) as |A|= |Q|+|∆|.168

Weighted transducers extend finite automata with string outputs and weights on trans-169

itions [15]. Any accepting run over some input word rewrites each input symbol into a (possibly170

empty) word, with some cost in N. Transducers can also have ε-input transitions with non-171

empty outputs, such that output symbols can be produced even though nothing is read on172

the input (e.g. allowing for symbol insertions). The output of a run is the concatenation of173

all output words occurring on its transitions. Its cost is defined by an aggregator function174

C :N∗→Q≥0, which associates a rational number to a sequence of non-negative integers.175

We consider three different aggregator functions, given later. Since there are possibly176

several accepting runs over the same input, and generating the same output, we take the177

minimal cost of them to compute the value of a pair of input and output words.178

I Definition 2 (C-transducers). Let C : N∗→Q≥0 be an aggregator function. A C-transducer T179

is a tuple (A,W) where A=(Q,QI ,QF ,∆) is an NFA over (Σε×Σ∗)\{(ε,ε)} and the function180

W :∆→N associates weights to each transition.181

Given a transition t=(q,a,v,q′)∈Q×Σε×Σ∗×Q, we write Orig(t)=q, In(t)=a, Out(t)=v,182

and Dest(t)=q′. We say that a transition t∈∆ can be triggered by T if it is in state Orig(t)183
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and reads In(t) on its input (note that it is always possible to read In(t)=ε). It, then, moves184

to Dest(t) and rewrites its input into Out(t). A run r= t1...tn of T is a run of A. We write185

In(r)=In(t1)...In(tn) and Out(r)=Out(t1)...Out(tn) and say that r is a run of T on the pair186

of words (In(r),Out(r)). Let (u1,u2)=(In(r),Out(r)). If moreover r is accepting, we say that187

(u1,u2) is accepted by T , and denote by AccRunT (u1,u2) the set of accepting runs over (u1,u2).188

We also say that u1 is accepted by T if (u1,u2) is accepted by T for some u2∈Σ∗. We denote189

the weight sequence of r by W(r) = W(t1)...W(tn) and its corresponding (aggregated) cost is190

C(r)=C(W(r)).191

A transducer T defines a relation from Σ∗ to itself, called a translation, denoted RT and
defined by: RT ={(u1,u2) |AccRunT (u1,u2) 6=∅}. The domain of T , denoted dom(T ) is the
set of words u1 for which there exists u2 such that (u1,u2)∈RT . The cost of a pair of words
(u1,u2) is given by:

CT (u1,u2)=
{

+∞ if (u1,u2) 6∈RT
min{C(r) |r∈AccRunT (u1,u2)} otherwise.

Note that since runs consume at least one symbol of the input or one of the output, there192

are finitely many runs on a pair (u1,u2), hence the min is well-defined. Finally, given ν ∈Q193

and an input word u1 ∈dom(T ), we define the threshold output language T≤ν(u1) of u1 as:194

T≤ν(u1) = {u2 | CT (u1,u2)≤ ν}. This notation extends naturally to languages N ⊆ Σ∗ by195

setting: T≤ν(N)=
⋃
u1∈N∩dom(T )T≤ν(u1).196

I Assumption 3. We restrict our attention to C-transducers T that satisfy the condition that197

for all u∈dom(T ), CT (u,u)=0 (in particular (u,u)∈RT ). In other words, it is always possible198

to rewrite u into itself at zero cost.199

This assumption requires that each point must belong to any of its neighborhoods, which200

naturally comes from the indiscernibility axiom of distance. However, we do not require the201

triangle inequality axiom, that the edit distance does not satisfy.202

Cost functions. We consider three aggregator functions, namely the sum, the mean and the203

discounted-sum. Let λ∈Q∩(0,1) be a discount factor. Given a sequence of weights τ=τ1...τn,204

those three functions are defined by:205

Sum(τ)=
n∑
i=1

τi Mean(τ)=
{

0 if τ=ε
Sum(τ)
n otherwise

DSum(τ)=
n∑
i=1

λ(i−1)τi206

Weighted-automata. When a C-transducer outputs only empty words, then its output207

component can be removed and we get what is called a C-automaton, which defines a function208

from words to costs. For C=Sum, this definition of Sum-automaton coincides with the classical209

notion weighted automata over the semiring (N∪{+∞},min,+) from [15].210

Robustness problems. We study the following three fundamental problems related to211

robustness for three different aggregator functions C∈{Sum,Mean,DSum}. Given a threshold212

ν ∈Q, a C-transducer T and a regular language L, a word u∈dom(T ) is said to be ν-robust213

(or just robust if ν is clear from the context) if T≤ν(u)⊆L. In other words, all its rewritings214

of cost ν at most are in L. A language N ⊆Σ∗ is said to be ν-robust if N∩dom(T ) contains215

only ν-robust words. Finally, the ν-robust kernel of T is the set RobT (ν,L) of ν-robust words:216

RobT (ν,L)={u∈dom(T ) |T≤ν(u)⊆L}. We prove that as the error threshold grows, so does217

the robust kernel.218
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I Proposition 4. Given ν,ν′∈Q>0, a C-transducer T and a regular language L, we have that219

ν′≤ν =⇒ RobT (ν′,L)⊆RobT (ν,L).220

Proof. By definition T≤ν(u1) = {u2 | CT (u1,u2) ≤ ν}. For all u1 ∈ dom(T ) we have that221

u1∈RobT (ν,L) iff for all u2 both u2∈L and CT (u1,u2)≤ν hold. Clearly u1∈RobT (ν,L) implies222

u1∈RobT (ν′,L) for any ν′≤ν. J223

We are in a position to formally define the three key problems studied in this paper. For224

these definitions, we let C∈{Sum,Mean,DSum}.225

I Problem 5 (Robust Inclusion). Given a C-transducer T , a regular language N ⊆Σ∗ as an226

NFA, a threshold ν∈Q≥0 and a language L⊆Σ∗ as a DFA, the robust inclusion problem is to227

decide whether N⊆RobT (ν,L), i.e. whether T≤ν(N)⊆L.228

Note that we consider our specification language L deterministically presented, for tractability.229

I Problem 6 (Threshold Synthesis). Given a C-transducer T , a regular language N⊆Σ∗ as an230

NFA, and a regular language L⊆Σ∗ as a DFA, the threshold synthesis problem is to output a231

partition of the set of thresholds Q≥0 =G]B into sets G and B of good and bad thresholds, i.e.232

G={ν∈Q≥0 |N⊆RobT (ν,L)} and B={ν∈Q≥0 |N 6⊆RobT (ν,L)}.233

As direct consequence of Proposition 4, the sets G and B are intervals of values, that is for234

all ν1,ν2∈Q≥0, if ν1<ν2 and ν2∈G, then ν1∈G, and if ν1∈B then ν2∈B.235

I Problem 7 (Robust Kernel Non-emptiness). Given a C-transducer T , a regular language236

L⊆Σ∗ as a DFA, a threshold ν∈Q≥0, the robust kernel non-emptiness problem is to decide if237

there exists u∈RobT (ν,L).238

For the cases where we provide algorithms for solving the non-emptiness of the robust239

kernel, we also succeed in synthesizing the robust kernel as an automaton.240

3 Robust Verification241

Given an instance of the threshold synthesis problem, we show how to compute the interval of242

good thresholds G and the interval of bad thresholds B in PTime for all the three measures243

we consider. As a corollary, we show that the robust inclusion problem for Sum,Mean,DSum244

measures is in PTime.245

In the following, we assume that N =dom(T ). This is w.l.o.g. as transducers are closed246

(in polynomial time) under regular domain restriction (using a product construction of T247

with the automaton for N). With this assumption, the set of good thresholds G becomes248

G={ν∈Q≥0 |dom(T )⊆RobT (ν,L)} and dually for the set of bad thresholds B. We let νT,L be249

the infimum of the set of bad thresholds, i.e. νT,L=infB=inf{ν∈Q≥0 |dom(T ) 6⊆RobT (ν,L)}.250

As illustrated by the following example, computing νT,L allows us to compute G=[0,vT,L] and251

B=[vT,L,+∞).252

I Example 8. Let Σ={a,b,c} and C∈{Mean,DSum}. Consider the best threshold problem for253

T the C-transducer of Figure 2, N=dom(T )=a∗ and L=a∗+b∗. Note that the translations254

accepted by ok and id belong to L. On the contrary, translations accepted by ko do not belong255

to L and so they are not robust w.r.t. L for any threshold. For Mean measure, the cost of a256

translation into c∗ is exactly 1 while the one into b∗ range over [0,1). Hence νMean
T,L =1 and the257

set partition of good and bad thresholds is GMean = [0,1) and BMean = [1,+∞). In the case of258
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T

id ok ko

a |a, 0 a |b, 1

a |b, 0 a |c, 2 a |c, 0

a |c, 1

Figure 2 Transducer T for which the infimums νMean
T,L = 1 and νDSum

T,L = 2 are bad thresholds for T
interpreted as Mean- and DSum-transducer with discount factor 1

2 respectively, and for L=a∗+b∗.

DSum with discount factor 0.5, the cost of a translation into c∗ range over [2,2.5) while the one259

into b∗ range over [0,2). So νDSum
T,L =2 and the thresholds are partitioned by GDSum =[0,2) and260

BDSum =[2,+∞).261

Then, we associate with every transducer T and property L given by some DFA A (assumed262

to be complete), a graph called the weighted-graph associated with T and A, and denoted by263

GT,A. Intuitively, GT,A is obtained by first taking the synchronised product of T and A (where264

A is simulated on the outputs of T ) and then by projecting this product on the inputs.265

Formally, given T = (Q,QI ,QF ,∆,W) and A = (P,pI ,PF ,δ), the synchronised product266

GT,A=(V,E,W′ : E→N) is such that:267

V =Q×P268

E is the set of edges e = (q,p)→ (q′,p′) such that there exists a ∈ Σε and a transition269

t=(q,a,u,q′)∈∆ such that p′=δ(p,u) where δ has been extended to words in the expected270

way. We say that e is compatible with t.271

For all e∈E, W′(e)=min{W(t) |e is compatible with some t∈∆}.272

Additionally, we note VI =QI×{pI} the set of initial vertices and VF =QF×(P \PF ) the set273

of final vertices of this graph. Given a path π in this graph as a sequence of edges e1...en, we274

let C(π)=C(W′(e1)...W′(en)).275

The following lemma establishes some connection between νT,L and the paths of GT,A.276

I Lemma 9. The infimum cost of paths from a vertex in VI to a vertex in VF is equal to νT,L,277

i.e. νT,L=inf{C(π) |∃s0∈VI ∃sf ∈VF s0
π−→GT,A sf}.278

Proof. We first show that any path π from VI to VF satisfies C(π)≥νT,L. Take such a path. By279

construction of GT,A, there exists an input word u1∈dom(T ), some output word u2 /∈L and an280

accepting run r of T on (u1,u2) of value C(r)=C(π). Since the value CT (u1,u2) is the minimal281

value of all accepting runs of T over (u1,u2), we have C(r)≥CT (u1,u2) and u1 is not robust for282

threshold CT (u1,u2), a fortiori for threshold C(r), from which we get C(r)=C(π)≥νT,L. This283

shows that νT,L≤ inf{C(π) |∃s0∈VI∃sf ∈VF s0
π−→GT,Asf}.284

Suppose that νT,L is strictly smaller than this infinimum (that we denote m) and take285

some rational number ν such that νT,L<ν <m. Since νT,L<ν, it is a bad threshold which286

means that there exists u1∈dom(T ) such that u1 6∈RobT (ν,L). Hence there exists u2 6∈L such287

that CT (u1,u2)≤ ν, and by definition of GT,A, there exists a path π from VI to VF of value288

C(π)≤ν. This contradicts the fact that ν<m by definition of m. Hence, νT,L=m, concluding289

the proof. J290

The next lemma establishes that the infimum of values of paths between two sets of states in291

a weighted graph can be computed in PTime and it is also decidable in PTime if the infimum292

is realized by a path, for all the three measures considered in this paper. As a direct corollary of293

this lemma we obtain the main theorem of the section. The full proof can be found in Appendix.294
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I Lemma 10. For a weighted graph G=(V,E,W :E→Q≥0), a set of sources VI⊆V and a set of295

targets VF ⊆V , the infimum of the weights of paths from VI to VF can be computed in PTime296

for all C∈{Sum,DSum,Mean}. Moreover, we can decide in PTime if this infimum is realizable297

by a path.298

Sketch of proof. First, if no state of VF are reachable from some state of VI , we have νT,L=+∞.299

Otherwise we use different procedures, depending on the aggregator C.300

For Sum, the infimum can be computed in Ptime using Dijkstra algorithm and it is always301

feasible. For Mean, we first note that the infimum is the Mean value of either a simple path or302

the value of a reachable cycle that can be iterated before moving to some target. In the latter303

case, the infimum is not feasible but can be approximated as close as possible by iterating the304

cycle. So, the infimum is feasible iff it is the Mean value of a simple path. The minimal Mean305

values amongst simple paths and cycles can be computed in Ptime with dynamic programming306

thanks to [18]. For DSum, Theorem 1 of [5] provides a PTime algorithm that computes for all307

v∈V , the infimum of DSum values xv of paths reaching the target VF from v. J308

I Theorem 11. For a given C-transducer T , a language N⊆Σ∗ given as an NFA and L⊆Σ∗309

given as a DFA, the set partition of good and bad thresholds (G,B) for C∈{Sum,DSum,Mean} can310

be computed in PTime.311

Proof. First, we restrict the domain of T to N by taking the product of T and the automaton312

for N (simulated over the input of T ). Then, according to Lemma 10, we can compute in313

PTime the value νT,L. This value is the infimum of B. If this infimum is feasible then the314

interval B is left closed and equal to [νT,L,+∞) while G=[0,νT,L), and on the contrary, if this315

infimum is not feasible, then B is left open and equal to (νT,L,+∞), while G=[0,νT,L]. Note316

that when νT,L=0 and is feasible, then G=[0,0)=∅. J317

As a direct consequence, the robust inclusion problem for a threshold ν can be solved by318

checking if ν∈G, and so we have the following corollary.319

I Corollary 12. Let C∈{Sum,DSum,Mean}. Given T a C-transducer, N⊆Σ∗ given as an NFA,320

L⊆Σ∗ given as a DFA and ν ∈Q. The language inclusion N ⊆ RobT (ν,L) can be decided in321

PTime.322

4 Robust Kernel Synthesis323

In this section, we show that the robust kernel is regular for Sum-transducers, and checking324

its emptiness is PSpace-complete. For Mean, we show that it is not necessarily regular, and325

checking its emptiness is undecidable. For DSum, we conjecture that the robust kernel is326

non-regular and give sufficient condition under which it is regular and computable, implying327

decidability of its emptiness.328

4.1 Sum measure329

To show robust kernel regularity, we rely on the construction of Theorem 2 of [2] in the context330

of weighted automata over the semiring (N∪{+∞},min,+). The following lemma, use the331

same automata construction and provides an upper bound on the number of states required to332

denote a threshold language with a DFA.333

I Lemma 13. Let U be an n state Sum-automaton and ν ∈ N. The threshold language334

Lν(U) = {w | U(w) ≥ ν}, where U(w) is defined as +∞ if there is no accepting run on w,335
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otherwise as the minimal sum of the weights along accepting runs on w, is regular. Moreover336

Lν(U) is recognized by a DFA with O
(
(ν+2)n

)
states.337

Proof. First, let assume that U has universal domain (i.e. any word has some accepting run),338

otherwise we complete it by assigning value ν to each word of its complement.339

Then, U(w)≥ ν iff all the accepting runs on w have value at least ν. We design a DFA340

D that accepts exactly those words. Since the weights of U are non-negative, D just has341

to monitor the sum of all runs up to ν, by counting in its states. If Q is the set of states of342

U , the set of states of D is 2Q×{0,...,ν−1,ν+}, where ν+ intuitively means any value ≥ ν. We343

extend natural addition to X={0,...,ν−1,ν+} by letting a+b= ν+ iff a= ν+, or b= ν+, or344

a+b≥ ν. Then, D is obtained by subset construction: there is a transition P σ−→P ′ in D iff345

P ′={(q′,i+j) |(q,i)∈P∧q σ|j−−→Uq
′}. A state P is accepting if P∩

(
(Q\F )×{0,...,ν−1}

)
=∅,346

where F are the accepting states of U .347

Though simple, the latter construction does not give the claimed complexity, as the number348

of states of D is 2nν . But the following simple observation allows us to get a better state349

complexity. Consider an input word of the form uv. If after reading u, D reaches some state350

P such that for some state q, there exists (q,i),(q,j)∈P such that i < j, then if there is an351

accepting run of U from q on v, with sum s, there is an accepting run on uv with sum i+s352

and one with sum j+s. Therefore if i+s≥ ν, then j+s≥ ν and the pair (q,j) is useless in353

P . So, we can keep only the minimal elements in the states of D, where minimality is defined354

with respect to the partial order (q,i)� (p,j) if q=p and i≤ j. Let us call Dopt the resulting355

“optimised” DFA. Its states can be therefore seen as functions from Q to {0,...,ν−1,ν+}, so356

that we get the claimed state-complexity. J357

I Lemma 14 (Robust language regularity). Let T be a Sum-transducer, ν∈N and L be regular358

language. The language of robust words RobT (ν,L) is a regular language. Moreover, if L is359

given by a DFA with nL states and T has nT states, then RobT (ν,L) is recognisable by a DFA360

with O
(
(ν+2)nT×nL

)
states.361

Proof of this lemma is provided in the appendix.362

I Theorem 15. Let T be a Sum-transducer, ν ∈N given in binary and L a regular language363

given as a DFA. Then, it is PSpace-complete to decide whether there exists a robust word364

w ∈ RobT (ν,L). The hardness holds even if ν is a fixed constant, T is letter-to-letter1 and365

io-unambiguous2, and its weights are fixed constants in {0,1}.366

Proof. From Lemma 14, RobT (ν,L) is recognisable by a DFA with O
(
(ν+2)nT×nL

)
states,367

where nT is the number of states of T and nA the number of states of the DFA defining L.368

Checking emptiness of this automaton can be done in PSpace (apply the standard NLogSpace369

emptiness checking algorithm on an exponential automaton that needs not be constructed370

explicitly, but whose transitions can be computed on-demand).371

To show PSpace-hardness, we reduce the problem from [19] of checking the non-emptiness372

of the intersection of n regular languages given by n DFA A1,...,An, over some alphabet Γ. In373

particular, we construct T , ν and a DFA A such that
⋂
iL(Ai) 6=∅ iff there exists a robust word374

with respect to T ,ν and L.375

We define the alphabet as Σ = Γ∪{#1,...,#n,a} where we assume that #1,...,#n,a /∈Γ,376

and construct a transducer T which reads a word wa of length k= |w|+1 with w∈Γ∗, and377

1 A transducer is letter-to-letter if ∆⊆Q×Σ×Σ×Q.
2 For all word pairs (w1,w2), there exists at most one run of T on w1 outputting w2.
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rewrites it into either itself, or (#i)k for all i∈{1,...,n}. The identity rewriting has total weight378

0 while the rewriting into #k
i has total weight 1 if w∈L(Ai), and 0 otherwise. The transducer379

T is constructed as the disjoint union of n+1 transducers T1,...,Tn,Ta. For all i∈{1,...,n}, Ti380

simulates Ai on the input and outputs #i whenever it reads an input letter different from a,381

with weight 0. When reading a from an accepting state of Ai, it outputs a with weight 1, and382

if it reads a from a non-accepting state, it outputs a with weight 0. Finally, Ta just realizes383

the identify function with weight 0. Note that T has polynomial size in A1,...,An and it is384

letter-to-letter and (input,output)-deterministic.385

Now we prove that a word wa is robust iff w∈
⋂
iL(Ai). Assume that there exists a robust386

word wa for the property L=(Γ∪{a})∗ and threshold ν=0. Equivalently, it means that for387

all rewritings α∈Σ∗, if SumT (wa,α)≤0 then α∈L. It is equivalent to say that all its rewritings388

α satisfies either SumT (wa,α)≥1 or α∈L. By definition of T , it is equivalent to say that all389

rewritings α are such that either α∈ (#i)∗ ·a for some i and w∈L(Ai), or α=wa. Since T390

necessarily rewrites wa into wa, as well as into (#1)k,...,(#n)k, where k= |w|+1, the latter391

assumption is equivalent to saying that w∈L(Ai) for all i∈{1,...,n}, concluding the proof. J392

4.2 Mean measure393

Let us first establish non-regularity of the robust kernel.394

I Lemma 16. Given a regular language L, a Mean-transducer T and ν ∈Q≥0, the language395

RobT (ν,L) is not necessarily regular, but recursive.396

Proof. Consider the language L={w |∃i∈N :w(i)=a} on the alphabet Σ={a,b}, i.e. the set397

of words on Σ that contain at least one a. Now, consider a (one state) transducer T that can398

non-deterministically copy letters or change the current letter from a to b with weight one.399

Now, if we fix ν to be equal to 1
2 , then all the translations of w by T of cost less than 1

2 are400

included in L, i.e. each translation of w will contain at least one letter a, if and only if, the401

number of a’s in w is larger than the number of b’s in w, i.e. RobT ( 1
2 ,L)={w |w]a>w]b}, which402

is not regular. Note that in general RobT (ν,L) is recursive because the membership problem to403

it, is decidable by Corollary 12 (applied on a singleton language). J404

We now show that testing the non-emptiness of the robust kernel is undecidable.405

I Theorem 17. Let L be a regular language, T be a Mean-transducer and ν∈Q≥0. Determine406

whether RobT (ν,L) 6=∅ is undecidable. It holds even if T is io-unambiguous.407

Proof. Let A be a Sum-automaton weight by integers. The proof goes by reduction from
determining whether all words admits a run of non-positive cost in A which is known to be
undecidable [10, 2]. From A, we construct L as the set of non accepting runs of A union Σ∗,
the threshold ν as the maximal absolute weight of A and T such that:

MeanT =
⋃ {(w,w) 7→0 |w∈Σ∗}
{(w,rw) 7→Xrw+ν|w| |rw run of A over w∈Σ∗ with value Xrw}

We can construct T as the disjoint union between a single-state transducer with weights zero408

realising the identity, and a transducer that outputs all the possible runs of A on its input, such409

that each T -transition simulating an A-transition t of value x (in A) has value ν+x, which is410

positive by definition of ν. Hence T is indeed weighted over non-negative numbers. Note that411

T is io-unambiguous: if the input and output are fixed, there is at most one run of T . Now, we412

show that RobT (ν,L)=∅ iff ∀w·A(w)≤0, i.e.413

∀w1∃w2∈L MeanT (w1,w2)≤ν iff ∀w A(w)≤0.414
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We have the following equivalences: ∀w1∃w2∈L·MeanT (w1,w2)≤ν iff for all w1, there exists415

an accepting run r of A on w1 such that MeanT (w1,r)≤ ν, i.e. SumT (w1,r)≤ ν|w1| and by416

definition of T , it is equivalent to asking that SumA(r)+ν|w1|≤ν|w1|, i.e. SumA(r)≤0. Hence,417

the latter statement is equivalent to the fact that for all words w1, there exists an accepting run418

of A of value ≤0. Since A takes the minimal value of all accepting runs to compute the value of419

a word, it is equivalent to saying that for all w1, A(w1)≤0, i.e., A is universal, concluding the420

proof. J421

4.3 Discounted sum measure422

For DSum-transducer, we conjecture that RobT (ν,L) is in general non-regular. This claim is423

substantiated by the fact that DSum-automata over Q and ω-words have in general non-regular424

cut-point languages, i.e. the set of words of DSum value below a given threshold is in general425

non-regular [9]. With a proof similar to that of Theorem 17 for Mean-transducers, it is possible426

to show that the universality problem for DSum-automata, which is open to the best of our427

knowledge, reduces to checking the emptiness of the robust language of a DSum-transducer.428

Following an approach that originates from the theory of probabilistic automata, it is has429

been shown that cut-point languages are regular when the threshold is ε-isolated [9]. Formally,430

a threshold ν ∈Q is ε-isolated, for ε>0 and for some DSum-transducer T if, for all accepting431

runs r of T , DSumT (r) ∈ [0,ν − ε]∪ [ν + ε,+∞). It is isolated if it is ε-isolated for some ε.432

Our objective now is to show that when ν is isolated, then RobT (ν,L) is regular and one can433

effectively construct an automaton recognizing it. We will also give a (possibly non-terminating)434

algorithm which, when it terminates, returns an automaton recognising RobT (ν,L), and which435

is guaranteed to terminate whenever ν is ε-isolated for some ε. Towards these results, we first436

give intermediate useful results. For a state q of T , we call continuation of q any run from q437

leading to some accepting state of T . By extension, we also call continuation of a run r any438

continuation of the last state of r. A transducer T is said to be trim if all its states admits439

some continuation. Note that any transducer can be transformed into an equivalent trim one440

in PTime, just by removing states that do not admit any continuation (this can be tested in441

PTime).442

I Lemma 18. Let T be a trim DSum-transducer and ν∈Q. If ν is ε-isolated for some ε, then443

there exists n∗ ∈ N such that any run r of length at least n∗ satisfies one of the following444

properties:445

1. DSum(r)≤ν−ε and any continuation r′ of r satisfies DSum(rr′)≤ν−ε446

2. DSum(r)≥ν+ε/2 and any continuation r′ of r satisfies DSum(rr′)≥ν+ε.447

Proof of this lemma is provided in the appendix.448

We now show how to construct better and better regular under-approximations of the set449

of non-robust words, show that they “finitely” converge to the set of non-robust words when ν450

is isolated.451

I Lemma 19. Let T be a DSum-transducer, ν∈Q and L a regular language (given as a DFA).452

For all n, we can construct an NFA An such that:453

1. L(An)⊆L(An+1)454

2. L(An)⊆RobT (ν,L)∩dom(T )455

Moreover, if ν is isolated, there exists n∗ such that L(An∗)=RobT (ν,L)∩dom(T ).456
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Proof of this lemma is provided in the appendix.457

We also show that one can test whether given n, we have RobT (ν,L)∩dom(T )⊆L(An), as458

stated by the following lemma:459

I Lemma 20. Given a regular languageN (given as some NFA), it is decidable to check whether460

RobT (ν,L)∩dom(T )⊆N holds.461

Proof. We take the synchronised product of T , L (on the output) andN (on the input), project462

the output, and check whether a path from an initial to a final vertex exists with discounted463

sum ≤ν. J464

Those results allow us to define the following semi-algorithm:465

1. Compute-Rob(T,ν,L)466

2. for n from 1 to +∞467

3. compute An // as in Lemma 19468

4. if RobT (ν,L)∩dom(T )⊆L(An) return An // using Lemma 20469

I Lemma 21. The algorithm Compute-Rob(T,ν,L) satisfies the following properties:470

1. if it terminates, then it returns an automaton recognising RobT (ν,L)∩dom(T ),471

2. if ν is isolated, it terminates.472

Proof. If it terminates at steps n, then by Lemma 19 and the test at line 4 we know that473

L(An)=RobT (ν,L)∩dom(T ), and if ν is isolated, the test will eventually succeed. J474

Note that the algorithm may terminate even if ν is not isolated. It is the case for instance475

when the threshold is ε-isolated for “long” runs only, but not necessarily for small runs, in the476

sense that it is only required that for some n, any accepting runs of length at least n satisfies477

either DSum(r)≤ ν−ε or DSum(r)≥ ν+ε. As a corollary of Lemma 21, RobT (ν,L) is regular478

when ν is isolated: it suffices to run Algorithm Compute-Rob, complement the automaton479

and restrict its language to dom(T ).480

I Theorem 22. Let T be a DSum-transducer and ν∈Q and L a regular language. If ν is isolated,481

then RobT (ν,L) is regular.482

5 Implementation and Case Study483

We describe an evaluation of the ideas presented thus far and their application to two case484

studies: one involving robustness of control strategies to humanmistakes and the other involving485

glucose values for patients with type-1 diabetes. We have implemented in Python the threshold486

synthesis problem (Problem 6) for the discounted and average costs. Our implementation487

supports the specification of a language L specified as an NFA, a weighted transducer T and a488

property P specified as some DFA. The implementation is available upon request.489

5.1 Robustness of Human Control Strategies490

An industrial motor operates under many gears g1,...,g5. Under fault, the human operator491

must take control of the machine and achieve the following: If the system goes into a fault the492

operator must ensure that (a) the system is immediately set in gears 3−5. Subsequently, for the493

next 5 cycles: (b) it must never go to gear g1 or g2; and (c) must shift and stay at a higher gear494

g4 or g5 after the 5th cycle until the fault is resolved.495
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r1 r2 r3 r4 r5

s s0 t1 t2 t3 t4 t5

s1 s2 s3 s4 s5

fault

g3

g3 g3 g3

g4

g3

g5
Σ\fault

Figure 3 Finite state automaton P showing a desired property for the automatic transmission
system. All incoming edges to s1,...,s5 have label g3, incoming edges to t1,...,t5 have label g4 and
r1,...,r5 have incoming edges labelled g5. All edges not shown lead to a rejecting sink state.

T0

s0

id, 0 gi |gi+1, 1
∀i∈{1,...,4}

gi |gi−1, 1
∀i∈{2,...,5}

T1

t0 t1 t2

id, 0

gj |gj−1, 1

gk |gk+1, 1

id, 0

gj |gj−1, 1

gk |gk+1, 1

id, 0

T2

t0 t1 t2 t3

id, 0

gj |gj−1, 1

gk |gk+1, 1

gj |gj−1, 1

gk |gk+1, 1

gj |gj−1, 1

gk |gk+1, 1

ε id, 0

Figure 4 Transducers modeling potential human operator mistakes along with their costs: T0

allows arbitrarily many mistakes whereas T1 restricts the number of mistakes to at most 2, whereas T2

models a “bursty” set of mistakes. The edge a |b,w denotes a replacement of the letter a by b with a
cost w. For convenience T2 uses an ε transition that can be removed.

Figure 3 shows a finite state machine P that accepts all words satisfying this property: fault496

is not in the operator’s control but g1,...,g5 are operator actions. Consider that the operator can497

perform this task in two different ways: σ1 : fault g4 g4 g4 g5 g5 versus σ2 : fault g3 g3 g3 g3 g4.498

The input σ1 induces the run s, s0, t1, t2, t3, r4, r5 whereas the input σ2 induces the run499

s,s0,s1,s2,s3,s4,t5. Both σ1,σ2 satisfy the property of interest and as such there is nothing to500

choose one over the other. Suppose the human operator can make mistakes, especially since501

they are under stress. We will consider that the operator can substitute a command for gear gi502

with gi−1 (for i>1) or gi+1 (for i<5). We use a weighted transducer T0 shown in Figure 4 to503

model these substitutions. The transducer defines possible ways in which a string σ can be504

converted to σ′ with a notion of cost for the conversion. In this example we consider two notions505

of cost: the DSum-cost, and the Mean-cost. These costs now allow us to compare σ1 versus σ2.506

For instance, under both notions we will discover that σ1 is much more robust than σ2. The507

robustness of σ1 under both cost models is∞ since any change to σ1 under the transducer508

continues to satisfy the desired property. On the other hand σ2 has a finite robustness, since509

operator mistakes can cause violations.510

The use of a transducer allows for a richer specification of errors. For instance, transducer511

T2 in Fig. 4 shows a model of “bounded” number of mistakes that assume that the operator512

makes at most 2 mistakes whereas T3 in Fig. 4 shows a model with “bursty” mistakes that513

assume that mistakes occur in bursts of at least 2 but at most 3 mistakes at a time. These514

models are useful in capturing fine grained assumptions about errors that are often the case in515
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Table 1 Running times and robustness values computed for various input strings (the first letter
fault is common to all the strings and is omitted). All timings are measured in seconds, ε denotes
time <0.01 seconds.

String T0 T1 T2

Disc. Avg. Time Disc. Avg. Time Disc. Avg. Time
g4g4g4g4g5g5 ∞ ∞ ε ∞ ∞ ε ∞ ∞ ε

g3g3g3g4g4g4 2−5 1
6 0.03 2−5 1

6 0.03 7
32

1
2 0.03

g3g4g4g4g5g4g4g4g3g4 0 0 0.04 0 0 0.06 0 0 0.06
g10

3 g10
4 0 0 0.07 0 0 0.09 0 0 0.1

g5
3g

15
4 g5

5g
3
4g5 7.45e−9 0.035 0.12 7.45e−9 0.035 0.2 2.6e−8 0.103 0.2

g4
3g

25
4 g25

5 3.7e-9 0.019 0.15 3.73e-9 0.019 0.4 6.52e-9 0.056 0.3

the study of human error or errors in physical systems.516

Using the prototype implementation, we report on the robustness of various inputs for this517

motivating example under the three transducer error models. The property P is as shown in518

Figure 3 and the transducers T0−T2 are as shown in Fig. 4. Table 1 reports the robustness519

values for various input strings and the running time. We note that while our approach takes520

about 0.3 seconds for a string of length 50, the prototype can be made much more efficient to521

reduce the time to compute robustness. Also we note that discounted sum becomes smaller as522

the strings grow larger while the average robustness value does not. We conclude that average523

robustness is a more useful measure due to this property in this particular example.524

5.2 Robust Pattern Matching in Type-1 Diabetes Data525

We will now apply our ideas to the robust pattern matching problem for analyzing clinical data526

for patients with type-1 diabetes. People with type-1 diabetes are required to monitor their527

blood glucose levels periodically using devices such as continuous glucose monitors (CGMs).528

Data from CGMs is uploaded online and available for review by clinicians during periodic529

doctor visits. Many applications such as Medtronic Carelink(tm) support the automatic530

upload and visualization of this data by clinicians. Physicians are commonly interested531

in analyzing the data to reveal potentially dangerous patterns of blood glucose levels: (a)532

Prolonged Hypoglycemia (P1): Do the blood glucose levels stay below 70 mg/dl (hypoglycemia)533

for more than 3 hours continuously? 3 (b) Prolonged Hyperglycemia (P2): Do the blood glucose534

levels remain above 300 mg/dl (hyperglycemia) for more than 3 hours continuously? 4; and (c)535

Rebound Hyperglycemia (P3): Do the blood glucose levels go below 70 mg/dl and then rise536

rapidly up to 300 mg/dl or higher within 2 hours? 5
537

Note that these patterns specify “bad” events that should not happen. A straightforward538

and strict pattern matching approach based on specifying the properties above will “hide”539

potentially bad scenarios that “nearly” match the desired pattern for two main reasons. First,540

the CGM can be noisy and inaccurate in a way that depends on the actual blood glucose value541

measured and when it was last calibrated. (see Figure 5 and more detailed description below).542

Secondly, the cutoffs involved such as 70 mg/dl and 3 hours are not “set in stone”. For instance,543

a clinician will consider a scenario wherein the patient’s blood glucose levels stays at 71 mg/dl544

for 2.75 hours as a serious case of prolonged hypoglycemia even though such a scenario would545

3 Such an event can lead to dangerous (and silent) nighttime seizures.
4 Such an event can lead to a potentially dangerous condition called diabetic ketacidosis.
5 Rebound hyperglycemia can lead to large future swings in the blood glucose level, raising the burden on
the patient for managing their blood glucose levels.
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Not Calib CalibDropoutNC DropoutC

alb,ub |a40,50,cost(dropout)
calibrate |calibrate,0

ε

ε

alb,ub |alb′,ub′ ,cost([lb,ub],[lb′,ub′])

calibrate |calibrate,0

alb,ub |alb′,ub′ ,2×cost([lb,ub],[lb′,ub′])
calibrate |calibrate,0

ε

ε

alb,ub |a40,50,cost(dropout)
calibrate |calibrate,0

Figure 5 Transducer model for capturing the errors made by continuous glucose monitors.

not satisfy the property P1.546

We propose to solve the approximate “pattern matching” problem. I.e, given a string w, a547

transducer T and a language L, we are looking for a word w′ such that w′∈L and CT (w′,w) is548

as small as possible. In other words, we solve the threshold synthesis problem (Problem 6) for549

a language L that is the complement of P1 (P2 or P3).550

We partition the range of CGM outputs [40,400] mg/dl into intervals of size 10 mg/dl551

over the range [40,80] mg/dl and 20 mg/dl intervals over the remaining range [80,400] mg/dl.552

This yields a finite alphabet Σ where |Σ|= 20. For instance a60,70 ∈ Σ represents a range553

[60,70]mg/dl. CGMs provide a reading periodically at 5 minute intervals. This yields a string554

where each letter describes the interval that contains the glucose value.555

Transducer. The CGM error model is given by a transducer that considers possible errors556

that a CGM can make (see Fig. 5). The transducer has four states: (a) Not Calib denoting557

that no calibration has happened, (b) Calib: denoting a calibration event in the past, (c)558

DropoutNC: a sensor drops out under the non calibrated mode and (d) DropoutC: a559

calibration event has happened and sensor drops out. The cost of changing a reading in the560

range [lb,ub] to one in the range [lb′,ub′] is denoted by a function cost(lb,ub,lb′,ub′) These costs561

are set to be higher for ranges [lb,ub] that are close to hypoglycemia. Also note that we can562

model calibration events and the doubling of costs if the sensor is in the calibrated mode.563

Property Specifications. We specify the three different properties described above formally564

using finite state machines over the alphabet Σ as defined above. The prolonged hypoglycemia565

property can be written as a regular expression: Σ∗(a40,50+a50,60+a60,70)36Σ∗ which can be566

easily translated into an NFA with roughly 38 states. The number 36 represents a period of567

180 minutes since CGM values are sampled at 5 minute intervals. Similarly, the other two568

properties are also easily expressed as NFAs.569

Finally, we compose the transducer model with the properties P1-P3 individually and570

calculate the mean robustness. More precisely, for each sequence of measures w, we compute571

the minimal threshold ν such that w can be rewritten by T at mean cost ν into some w′572

satisfying P1 (and P2, P3 respectively). The discounted sum robustness is not useful in this573

situation since the patterns can match approximately anywhere in the middle of a trace. Also,574

in most cases the discounted sum robustness value was very close to zero for any discount factor575

<1 or became forbiddingly large for discount factors slightly larger than 1, due to the large576

size of the traces.577

Patient Data. We used actual patient data involving nearly 50 patients with type-1 diabetes578

undergoing a clinical trial of an artificial pancreas device, and nearly 40 nights of data per579

patient, leading to an overall 2032 nights. Each night roughly corresponds to a 12 hour period580



16

when CGM data was recorded [20]. This is converted to a string of size 140 (or slightly581

larger, depending on how many calibration events occurred). The threshold synthesis problem582

(Problem 6) was solved for each of the input strings, and the results were sorted by the threshold583

robustness value for properties P1-P3.584

Table 2 Total time taken per property and number
of matches for various ranges of the threshold.

Prop. Total Time Threshold Values synthesized
0 (0,0.1] (0.1,1.0] >1.0 ∞

P1 4hr10m31s 0 8 2 95 1927
P2 2hr10m30s 0 28 13 0 1991
P3 2h0m9s 0 11 10 0 2011

Table 2 shows for each property, the585

total time taken to complete the analysis586

of the full patient data, and the number587

of matches obtained corresponding to588

various threshold values. As the table589

reveals, no single trace matches any of590

the properties perfectly. However, our591

approach is more nuanced, and thus, al-592

lows us to find numerous approximate593

matches that can be sorted by their robustness threshold values. Note that many of the input594

traces yield a threshold value of∞: this signifies that no possible translation as specified by595

the transducer can cause the property to hold.596

Figure 6 Examples of patterns with small robustness
thresholds for properties P1 (left) with robustness value of
0.7, and P3 (right) with robustness 0.02. The red triangles
show calibration events.

Figure 6 shows two of the597

approximate pattern matches ob-598

tainedwith a small robustness value.599

Notice that the CGM values on the600

left do not satisfy the criterion for601

a “prolonged hypoglycemia” for 3602

hours (P1) in a strict sense due to a603

single point at the end of the trace604

that is slightly above the 70 mg/dl605

threshold. Nevertheless, our ap-606

proach assigns this trace a very low607

robustness. Likewise, the plot on608

the right shows a rapid rise from a609

hypoglycemia to a hyperglycemia610

within 120 minutes (P3) towards the beginning, except that the peak value just falls short of611

the threshold of 300 mg/dl.612

Note that related work in the area of monitoring cyber-physical systems (CPS) mentioned613

earlier [16, 14, 12, 1] can be used to perform approximate pattern matching using robustness614

of temporal properties over hybrid traces. However, we note important differences that are615

achieved due to the theory developed in this paper. For one, the use of a transducer can provide616

a nuanced model of how errors transform a trace, wherein the transformation itself changes617

based on the transducer state. A detailed transducer model of CGM errors remains beyond618

the scope of this study but will likely be desirable for applications to the analysis of patterns in619

type-1 diabetes data.620

6 Conclusion621

In conclusion, we have shown how notions of robustness can be defined through weighted622

transducers along with approaches for solving the threshold and kernel synthesis problems623

for various cost aggregators such as Sum, DSum and Mean. In the future, we will investigate624

these notions for richer classes of systems including timed and hybrid systems. We also plan to625

investigate connections to robust learning of automata from examples.626
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Appendix699

Proof of Lemma 10700

Proof. We first trim the graph G by removing all the vertices that cannot be reached from VI701

and that cannot reach VF as those vertices cannot participate to paths from VI to VF . The set702

of paths from VI to VF is empty iff the trimmed graph is empty and then the infimum is equal703

to +∞. Now, we assume the trimmed graph to be non-empty, i.e. there is at least one path704

from VI to VF . In that case, the infimum value is guaranteed to be a non-negative rational705

number.706

We now consider the three measures in turn. For Sum, computing the infimum amounts to707

computing a shortest path in a finite graph with non-negative weights. Any PTime algorithm708

that solves this problem can be used, e.g. Dijkstra shortest path algorithm. In the case of sum,709

the infimum is always realized by a (simple) shortest path.710

For Mean, we first note that the infimum is either realized by a simple path from VI to VF711

of minimal Mean value, or it is equal to the minimal Mean value among the simple cycles in712

the graph. Indeed, if c is a cycle of Mean m which is smaller than the Mean value of any path713

from VI to VF then the family of paths ρk=p·ck ·s, where p is simple path from VI to c and714

s is a simple path from c to VF (such simple paths exist as the graph is trimmed), is such715

that limk 7→ +∞Mean(ρk)=Mean(c) and Mean(c) is the infimum. Now if all the simple cycles716

have a value larger than the infimum, they cannot participate to a path or a family of paths717

that realize the infimum as those cycles can be systematically removed and give paths with718

smaller values. Now, we note that the minimum value of simple paths from VI to VF can be719

computed in PTime by a simple dynamic program that considers the minimal values of paths720

of lengths at most equal to the number of states in the trimmed graph. Moreover, the minimum721

mean value of simple cycles in the trimmed graph can be computed in PTime using the Karp722

algorithm [18]. It is easy to see that the infimum is feasible iff it equals the minimum Mean723

value of simple paths.724

We now turn to the DSum measure. Remember that the graph is trimmed according to725

VI and VF . Theorem 1 of [5] tells us that we can compute for all v∈V , the infimum of DSum726

values xv of paths reaching the target VF from v, in PTime. According to Lemma 1 of [5], and727

similarly to the case of Mean, for all vI ∈VI , the infimum DSum value xvI of paths from vI to728

some vF ∈VF is either realized by a simple path or by a family of paths of the form p ·ck ·s.729

This is because if it is beneficial to include a cycle c to reduce the cost of a path from vI to730

vF then it is beneficial to repeat the cycle arbitrarily many times. In particular, the infimum731

value is feasible only when there exists a simple path with this value. In order to decide the732

feasibility of the values xvI for all vI ∈VI , we consider a subgraph where we keep only those733

edges e= (v,v′) such that the optimal value xv of v can be realised through the vertex v′.734

Formally, we construct G′=(V,E′) with E′⊆E and such that (v,v′)∈E′ if xv=λxv′+W(v,v′).735

We claim that, VF is reachable from v inG′ iff xv is feasible inG from v, hence testing feasibility736

boils down to checking the existence of a path in G′.737

The left-to-right implication comes by induction on the length of the path π to reach some738

vF ∈VF from v. If v∈VF then |π|= 0, xv = 0 and this value is feasible. Assume v 6∈VF and739

π = (v,v′)π′. By induction hypothesis, xv′ is feasible by some path π′′ from v′ to VF . By740

construction of G′ we have xv = λxv′ + W(v,v′). Hence xv is feasible by (v,v′)π′′. For the741

right-to-left implication, if v ∈ VF it is trivial, so assume that v 6∈ VF and let π= (v,v′)π′ a742

path that realises xv. Assume xv>λxv′+W(v,v′). This contradicts the optimality of xv, as743

π witnesses a better discounted value from v to VF . Assume xv <λxv′+W(v,v′), then since744

π realises xv, we have xv = W(v,v′)+λDSum(π′). It implies DSum(π′)<xv′ . This contradicts745
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the minimality of xv′ , as then π′ witnesses a better value for paths from v′ to VF . Hence746

xv =λxv′+W(v,v′) and (v,v′) is an edge of G′. By induction on the length of π, we can also747

conclude that π′ is a path of G′ and then π is a path of G′ from v to VF . J748

Proof of Lemma 14749

Proof. First, we show that the complement of RobT (ν,L) , defined as

RobT (ν,L)={w1 |∃w2 ·SumT (w1,w2)<ν∧w2 6∈L}

is regular. First, let us assume that L is given by some NFA A, let A be a DFA recognizing the
complement of L. We first transform T into T⊗A, which simulates T and controls that the
output words belong to L. In particular, it rejects whenever the rewriting by T is in L. It is
obtained as a product of T with A run on the output, with set of states QT×QA. It accepts
whenever the final pair of states (p,q) is a pair of accepting states both for T and A. Then, we
have the following:

RobT (ν,L)={w1 |∃w2 ·SumT⊗A(w1,w2)<ν}

Now, by definition of SumT⊗A(w1,w2) we have w1∈RobT (ν,L) iff there exists a word w2 and750

an accepting run r over (w1,w2) such that Sum(r)<ν. Therefore, we can project T⊗A on its751

input dimension (thus, we just ignore the outputs) and obtain a Sum-automaton that we call U752

such that RobT (ν,L)={w1 |U(w1)<ν}, where U(w1) is defined as +∞ if there is no accepting753

run of U on w1, and as the minimal sum of the accepting runs on w1 otherwise. Complementing754

again, we get: RobT (ν,L) = {w1 | U(w1) ≥ ν}. Now, we apply directly Lemma 13 on U to755

conclude for regularity. The state-complexity is again given by Lemma 13 and the fact that U756

has nT×nL states. J757

Proof of Lemma 18758

Proof. Let r be a run of length n of T . Since T is trim, there exists a continuation r′ of r, and759

moreover we have DSum(rr′)=DSum(r)+λnDSum(r′). We have DSum(r′)≤
∑+∞
i=0λ

iµ=µ(1−λ)−1
760

where µ is the largest absolute weight of T . We let Bn=λnµ(1−λ)−1. Let n∗ be the smallest761

non-negative integer such that Bn∗≤ε/2 (it exists since Bn is strictly decreasing of limit 0).762

Assume that the length of r is greater than n∗ i.e. n≥n∗. As a consequence Bn≤Bn∗ . Since ν763

is ε-isolated, we have two cases:764

i. If DSum(rr′)≤ν−ε then DSum(r)≤ν−ε since DSum(r)≤DSum(rr′) by non-negativity of the765

weights of T766

ii. If DSum(rr′)≥ν+ε then DSum(r)≥ν+ε−λnDSum(r′). Moreover λnDSum(r′)≤Bn≤Bn∗≤767

ε/2 by construction. So −λnDSum(r′)≥−ε/2 which implies DSum(r)≥ν+ε/2.768

We have just shown that either DSum(r)≤ ν−ε by (i) or DSum(r)≥ ν+ε/2 by (ii). We prove769

now that, for all continuation r′ of r we have (i) implies DSum(rr′)≤ ν− ε and (ii) implies770

DSum(rr′)≥ν+ε. In the first case, assume by contradiction that (i) holds and some continuation771

r′ of r satisfies DSum(rr′)≥ν+ε. As a consequence λnDSum(r′)≥2ε, which is impossible since772

λnDSum(r′)≤Bn≤Bn∗≤ε/2. In the second case, if DSum(r)≥ν+ε/2 then any continuation r′773

of r satisfies DSum(rr′)≥DSum(r)>ν+ε/2. Since ν is ε-isolated, we get DSum(rr′)≥ν+ε. J774

Proof of Lemma 19775

Proof. For all n, we let Bn = λnW (1−λ)−1, as in the proof of Lemma 18. A run r on a776

pair (w1,w2) is called bad if DSum(r) ≤ ν, w2 6∈ L and r is accepting. Not that necessarily,777
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w1 6∈RobT (ν,L). The run r is called dangerous if |r|≥n and DSum(r)≤ν−Bn. A dangerous run778

r can possibly be extended to a bad run rr′. It is possible iff there exists a continuation r′ of r779

such that the output of rr′ is not in L. Note that the cost of rr′ does not matter because the780

largest value r′ can achieve is Bn, keeping DSum(rr′) smaller than ν. Hence, when a dangerous781

run is met, only a regular property has to be tested to extend it to a bad run. We exploit this782

idea in the automata construction. Namely, An will accept words for which there exists a bad783

run of length n at most, or a dangerous run of length n which can be extended to a bad run.784

• Automata construction Let Runs≤nT be the runs of T of length at most n, and Q its set of785

states. We assume that for all (w1,w2)∈RT , w2 6∈L holds. This can be ensured by taking the786

synchronised product of T (on its outputs) with an automaton recognizing the complement of787

L. Let us now build the NFA An. Its set of states is Runs≤nT ∪Q. Its transitions are defined as788

follows: for all T -runs r of length n−1 at most ending in some state q, for all σ∈Σε, if there789

exists a transition t of T from state q on reading σ, then we create the transition r σ−→rt in An.790

From any run r of length n, we consider two cases: if r is not dangerous, then r has no outgoing791

transitions in An. If r is a dangerous run, then we add some ε-transition to its last state: r ε−→p792

where p is the last state of r. Finally, we add a transition from any state q to any state q′ on σ793

in An whenever there is a transition from q to q′ on input σ in T . Accepting states are bad794

runs of Runs≤nT and accepting states of T .795

• Correctness Let us show that the family An satisfies the requirements of the lemma.796

First, we show that L(An)⊆ L(An+1). Let w ∈ L(An) and ρ some accepting run of An on797

w. To simplify the notations, we assume here in this proof that runs of An, An+1 and T are798

just sequences of states rather than sequences of transitions. By definition of An, ρ can be799

decomposed into two parts ρ1ρ2 such that ρ1 ∈ (Runs≤nT )∗ and ρ2 ∈Q∗ with an ε-transition800

from the last state of ρ1 to the first of ρ2. We consider two cases. If |ρ2|=0, then ρ=ρ1 and by801

definition of An+1, ρ is still an accepting run of An+1. In the other case, there is a dangerous802

run r of T such that ρ1 can be written ρ1 = r[: 1]r[: 2]...r[:n] where r[: i] is the prefix of r up803

to position i, and ρ2 = q1q2 ...qk is a proper run of T . Note that q1 is the last state of r by804

construction of An. Moreover, rρ2 is bad. Since r was dangerous at step n, we also get that805

rq2 is dangerous at step n+1, in the sense that |rq2|= n+1 and DSum(rq2)≤ ν−Bn+1, by806

definition of Bn+1 and the fact that DSum(r)≤ν−Bn. So, we get that the sequence of states807

ρ1.(rq2).q2...qk is a run of An+1 on w is accepting in An+1 (note that rq2 here is a state of An+1808

and there is an ε-transition from (rq2) to q2), concluding the first part of the proof.809

Now, suppose that ν is ε-isolated for some ε. Then, take n∗ as given by Lemma 18 and let us810

show that RobT (ν,L)∩dom(T )⊆L(An∗) (the other inclusion has just been proved for all n). Let811

w∈dom(T ) such thatw 6∈RobT (ν,L). There exists (w1,w2)∈RT and an accepting run r of T on812

it such that DSum(r)≤ν and w2 6∈L. In other words, r is bad. If |r|≤n∗, then r[:1]r[:2]...r[: |r|]813

is an accepting run of An∗ on w, and we are done. Now suppose that |r|> n∗. Since ν is814

ε-isolated, we have DSum(r)≤ν−ε. By Lemma 18, we also get that DSum(r[:n∗])≤ν−ε. By815

definition of n∗ being the smallest integer such that Bn∗<ε/2, we get DSum(r[:n∗])≤ν−Bn∗ ,816

hence r[:n∗] is dangerous. We can conclude since then r[:1]r[:2]...r[:n∗]r[n∗]r[n∗+1]...r[|r|] is817

an accepting run of An∗ on w. J818
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