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Abstract. Reachability analysis is a fundamental problem in verification that
checks for a given model and set of initial states if the system will reach a given
set of unsafe states. Its importance lies in the ability to exhaustively explore the
behaviors of a model over a finite or infinite time horizon. The problem of reach-
ability analysis for Cyber-Physical Systems (CPS) is especially challenging be-
cause it involves reasoning about the continuous states of the system as well as its
switching behavior. Each of these two aspects can by itself cause the reachabil-
ity analysis problem to be undecidable. In this paper, we survey recent progress
in this field beginning with the success of hybrid systems with affine dynamics.
We then examine the current state-of-the-art for CPS with nonlinear dynamics
and those driven by “learning-enabled” components such as neural networks. We
conclude with an examination of some promising directions and open challenges.

1 Introduction

Formal verification techniques attempt to exhaustively explore the behaviors of com-
putational models that include finite state machines that model sequential circuits and
network protocols; push-down machines that model function calls/returns in software;
Petri-net models of concurrent systems or timed automata that model the execution of
real-time systems. In each of the instances above, the reachability problem asks given a
model, an initial set of configurations and a target unsafe set, whether the system start-
ing at some initial state can reach an “unsafe” state in some finite number of steps. A
reachability analyzer will either provide a proof that the unsafe set is not reachable or a
witness execution that shows how to reach an unsafe state starting from an initial state.

Reachability analysis has been a powerful tool for checking properties of hard-
ware circuits and software programs with success stories arising from their ability
to discover bugs in these systems or prove their absence through exhaustive verifica-
tion [42,69,20,117,40,75,27,26,48,68]. Since the early 90s, the formal methods and
control theory communities have investigated so-called “hybrid” or “Cyber-Physical
Systems” (CPS), that model computation interacting closely with a physical environ-
ment. Such systems have been mathematically captured by formalisms such as hybrid
automata, that combine the evolution of continuous states through ordinary differen-
tial equations (ODEs) with discrete mode switches modeled using finite state automata.
CPS include systems from a variety of safety-critical areas such as medical devices,
control systems that help fly airplanes, power systems and autonomous vehicles. Mod-
eling these systems and reasoning about the set of all reachable states can go a long way
towards guaranteeing safe operation during deployment.
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(a) (b)

Fig. 1. Reachable sets (in gray) showing the possible blood glucose levels of a patient controlled
by two different instantiations of an automated insulin infusion algorithm taken from Chen et
al [34]. Simulation trajectories are shown in black. The analysis proves for instance (a) that the
blood glucose levels remain below 260 mg/dl over a 24 hour period, whereas for instance (b) it is
unable to establish that bound.
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Fig. 2. Block Diagram of an Insulin Infusion Control System.

Consider the block di-
agram of an insulin infu-
sion control system for pa-
tients with type-1 diabetes
taken from our previous
work [34]. Here, b(t) rep-
resents external user com-
manded insulin, u(t): the
insulin infused to patient,
G(t), blood glucose level
of the patient, n(t): sensor
measurement error (noise),
Gs(t): glucose level estimated/reported by sensor, and uc(t): insulin infusion com-
manded by the algorithm. The patient’s blood glucose level is modeled using nonlinear
human insulin-glucose model coupled with a controller that switches between various
levels of insulin, based on the sensed blood glucose level of the patient. The reachable
set estimates computed using the tool Flow* [33] establishes bounds the possible blood
glucose levels over a 24 hour time period. Such a flowpipe can be used to establish
upper and lower bounds on the value of the blood glucose levels as shown in figure 1.
Further details are available from our ARCH 2017 paper [34].

In this paper, we present a brief overview of reachability analysis for Cyber-Physical
Systems. We begin by formulating the problem in a formal manner and discuss cases
when the problem is known to be decidable along with a brief mention of the broad
class of approaches taken to solve the reachability problem. We focus on set-based tech-
niques for systems with linear dynamics wherein powerful tools such as SpaceEx [56]
and Hylaa [18] have pushed the state of the art to large hybrid systems with thousands
of state variables. We then present some of the approaches for nonlinear systems, while
illustrating why the problem is much more challenging when the dynamics are non-
linear. We discuss emerging areas of interest, including reachability analysis for neural
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networks. This paper is not meant to be an exhaustive survey of results in this area. A
recent survey by Althoff et al is recommended for the reader who wishes to learn more
about set-based techniques [4]. The main purposes of this article are to (a) illustrate why
the problem is important but challenging; (b) highlight some important approaches to
the problem; and (c) highlight a few emerging areas where efficient and precise reach-
ability analysis techniques will play an important role.

2 Hybrid Systems and Reachability Analysis

In this section, we will briefly review some of the fundamental concepts that include (a)
models of hybrid (Cyber-Physical) systems; (b) the reachability analysis problem; (c)
decidable cases for the problem and (d) a brief overview of existing approaches.

A Brief History: The formal study of hybrid (Cyber-Physical) systems was initiated
in the early 1990s from the computer science and the control communities. In the con-
trols community, the consideration of hybrid control systems began in the late 1980s as
an attempt to formalize supervisory control wherein discrete-event systems are used to
represent “higher level” decision making which may switch between multiple “lower
level” control strategies to interact with a continuous plant [13]. Early modeling efforts
for such systems include the work of Peleties and DeCarlo [97], Gollu and Varaiya [64]
and Benveniste and Le Guernic [22]. In the computer science community, the problem
of modeling and reasoning about reactive systems naturally led to the consideration of
timed systems followed by hybrid systems [88]. The timed-automaton model of Alur
and Dill augments automata with finitely many clocks that can trigger transitions be-
tween states which may in turn reset these clocks [10,11]. Hybrid systems can then
be modeled augmenting these further with physical quantities that evolve according to
simple differential equations [89,8,96].

The hybrid automaton model was proposed in order to unify the continuous evolu-
tion of state variables with switching due to mode changes within a single formalism.
Detailed descriptions are available elsewhere [7,84,114].

Example 1. Figure 3 illustrates a hybrid automaton with four modes {m1, . . . ,m4},
continuous state variables {x1, x2, x3} and an external time-varying disturbance input
w lying in the range [−0.25, 0.25]. The dynamics inside each mode and the transitions
between modes are also shown. The transitions are defined by guards and reset maps, as
shown in the figure. The figure also shows 5000 trajectories with randomly sampled ini-
tial conditions starting from mode m1 and x1 ∈ [0.3, 0.5], x2 ∈ [0.2, 0.4], x3 ∈ [0, 0.4]
with the disturbance in the range [−0.25, 0.25]. Each mode is shown in a different color.
We note that only 6 out of the 5000 trajectories reach mode m2 (green).

The example above shows the need for exhaustive simulations, since “corner case be-
haviors” that violate safety properties are often a concern. We have encountered more
realistic systems wherein nearly 100 million random simulations do not expose a safety
violation that can be discovered quite easily by a more exhaustive approach [121].



4 Chen and Sankaranarayanan

Mode: m3

ẋ1 = −0.5x1 + x2 + 0.2w
ẋ2 = −x1 + 0.2x3 − 0.2w
ẋ3 = x2 + x1 − w

Mode: m1

ẋ1 = 0.5x1 − x2 − 0.5w
ẋ2 = −x1 + 0.2x3 + 0.2w
ẋ3 = −x2 − x1 − w

Mode: m4

ẋ1 = 0.5x1 − x2 + 0.1w
ẋ2 = x1 − 0.2x3 − 0.1w
ẋ3 = x2 − x1 + w

Mode: m2

ẋ1 = −0.5x1 + x2 + 0.2w
ẋ2 = −x1 + 0.2x3 − 0.2w
ẋ3 = −x2 + x1 − w

t1, t3 t2, t4

t5, t6

t7, t8
t9, t10t11, t12

t13, t14

t15, t16

x1
x2

IDs Guard Reset IDs Guard Reset
t1, t11 x2 ≥ 1 none t2, t9 x2 ≤ 1 none
t3, t12 x2 ≤ 0 x2 := 1.9, x3 := 0 t4, t10 x2 ≥ 2 x2 := 0.1, x3 := 0
t5, t13 x1 ≥ 1 none t7, t15 x1 ≤ 1 none
t6, t14 x1 ≤ 0 x1 := 1.9, x3 := 0 t8, t16 x1 ≥ 2 x1 := 0.1, x3 := 0

Fig. 3. Description of hybrid automaton and randomly simulated trajectories.

2.1 Reachability Analysis

Rather than rely on finitely many simulations, we wish to exhaustively explore the set
of reachable states of a hybrid system, in order to decide if a given set of unsafe states
is reachable starting from a set of initial conditions. This is known as the reachability
analysis problem.

Definition 1 (Reachability Problem). Given a hybrid system H, initial set of states
X0, unsafe set Xu and time horizon T , is there any trajectory that starts from some
state in X0 and reaches some state in Xu, within the given time horizon T?

The reachability analysis problems can be finite time horizon problems where T is
finite, or infinite time horizon problems if T = ∞. Naturally, the latter class of problems
are harder than the former. Although a finite time horizon seems restrictive, there are
many reasons why it is important: (a) often, it is known that failures would manifest
within a finite time horizon if at all; (b) in many cases the reachability analysis problem
has uncertain time varying parameters that makes the model invalid for infinite time
horizons; or (c) the infinite time horizon problem is often harder to solve than the finite
time horizon problem.

Reachability analysis is a fundamental verification problem for hybrid systems. Im-
portant correctness properties of hybrid systems are naturally posed as safety properties.
Reachability analysis can also be used as a primitive step for reasoning about more com-
plex liveness properties. Therefore, the question of decidability of reachability problem
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is of great interest. Unfortunately, it is known that the reachability analysis problem is
undecidable for all but the simplest classes of hybrid systems.

Asarin, Maler and Pnueli showed that hybrid systems with piece-wise constant dy-
namics (the simplest dynamics possible) already have an undecidable reachability prob-
lems for systems with 3 or more state variables [15]. Specifically, their model considers
a partitioning of the state-space by convex polyhedra where each partition has its dy-
namics of the form ˙⃗x = c⃗ for a fixed c⃗. At the same time, the reachability analysis
problem is undecidable for non-linear dynamical systems without any switching [94].
The finite time horizon reachability problem for linear dynamical systems (also known
as the “continuous Skolem-Pisot problem” [21]) has been shown to be decidable pro-
vided an open number-theoretic conjecture called the Schaunel conjecture is true [36].
Broadly, we note that undecidability arises separately from the presence of switching
between modes even if the dynamics are simple, or just from the continuous dynamics
themselves without switching. The reachability problem for systems combining both
switching and linear/non-linear dynamics is thus a computationally hard problem.

In the past three decades since these results, a number of sub-classes of hybrid au-
tomata have been identified for which the reachability problem is decidable, starting
with Henzinger et al [71] who defined the class of initialized rectangular hybrid au-
tomata. Subsequently, O-minimal hybrid systems that allow for a more general class
of dynamics in each mode were introduced by Laffarriere et al [82]. These have been
generalized by Vladimerou et al [118]. In general, decidability results place restrictions
on the form of transitions between modes as well as the dynamics in each mode. These
restrictions ensure that the resulting system has a finite bisimulation quotient which can
be used to check any temporal logic property. However, such restrictions are often not
met by the systems which we are interested in reasoning about. As a result, numerous
approaches attempt to solve the reachability problem by over-approximating the reach-
able set of states, or proposing a semi-algorithm that may not terminate in the worst
case. The former class of approaches can help us conclude that the unsafe states are
not reachable but fail to provide concrete counterexamples, whereas the latter class of
approaches can fail by exhausting computational resources. We will now summarize a
few approaches for solving the reachability analysis problem.

Abstraction-Based Techniques: The goal is to construct a finite-state abstraction that
can be refined, possibly using counterexamples. Once the abstraction is constructed, we
solve the reachability problem on this abstraction. If the unsafe set in the abstract state-
space cannot be reached, we conclude the same for the original system. However, ab-
stract counterexamples can be spurious: i.e, they need not correspond to a real execution
of the concrete system. This can be addressed by refining the abstraction to rule away
such counterexamples [12,9,41,61]. Interestingly, the abstractions need not necessarily
be finite state. For instance, Prabhakar et al present an approach that considers rectan-
gular hybrid automata as abstractions [102]. Hybridization is yet another approach that
relies on locally abstracting nonlinear dynamics by linear dynamics while accounting
for the error [46]. Abstraction-based approaches are quite versatile since they can be
applied to a large class of hybrid systems with nonlinear dynamics. However, these ap-
proaches typically resort to tiling the state-space into discrete cells in order to handle
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complex nonlinear dynamics. This often limits the number of state variables that can be
treated by these techniques.

Dynamic Programming (Hamilton-Jacobi) Approaches: In this approach, the more
general problem of controlling a hybrid system (with control and disturbance inputs) is
considered as a game between two players. The goal is to characterize a controllable
region (termed as the viability kernel), a subset of the state-space which excludes the
undesired set of states, such that the controller can keep the system within this region
no matter what disturbance signal is applied. This approach was proposed by Lygeros,
Tomlin and Sastry [85], and leads to a partial differential equation (PDE) that needs
to be solved in order to compute the controllable region. Subsequent work by Mitchell
and Tomlin uses level-set methods to solve this PDE [93,92]. The dynamic program-
ming approach is quite powerful: it applies to nonlinear systems and can compute a
set of control strategies for guaranteeing safety. We note, however, that the reachability
problems we have considered thus far do not involve control inputs. However, solving
PDEs requires expensive numerical methods whose complexity can be exponential in
the number of state variables.

Deductive Approaches: Deductive approaches are based on proving that the unsafe
states are unreachable from the initial set by obtaining (positive) invariant sets of the hy-
brid system, and proving that these sets contain the initial set but exclude the unsafe set.
Such invariants can be synthesized automatically using techniques from optimization
and algebraic geometry [110,115,103,60]. However, invariant construction techniques
are quite limited in the kind of systems that can be proven correct. In general, they
play a supporting role inside a theorem prover that is built on top of a logic that sup-
ports reasoning about hybrid systems. The work of Platzer et al has constructed the rich
framework of differential dynamic logic [101,99] and integrated this inside a theorem
prover Keymaera [100,98]. In general, deductive approaches can prove that unsafe sets
are not reachable. It is incumbent upon the user to deduce how the failure of a proof can
lead to the construction of a counterexample.

Set-Propagation: Set propagation approaches rely on a chosen family of sets to repre-
sent sets of states (examples include ellipsoids, polyhedra, Taylor models) [4]. At each
step, the reachable set is represented as a union of sets in this family. These algorithms
propagate these sets for a small time step ∆ so that an approximation that is valid for
time up to t is now valid for time up to t +∆. By repeatedly iterating this process, an
over-approximation of the reachable sets up to a finite time horizon T is produced. Set
propagation techniques have been investigated extensively for linear systems beginning
with the pioneering work on the tool HyTech for rectangular hybrid automata [70] and
followed by a quick succession of approaches for richer classes of hybrid systems per-
mitting nonlinear dynamics [112,14]. Currently, set propagation techniques are capable
of analyzing linear dynamical systems with more than a billion state variables [19],
linear hybrid systems with hundreds of state-variables [56] and nonlinear systems with
tens of state variables [33]. Due to the over-approximate nature of these techniques,
they are unable to produce concrete counter-example. Furthermore, these approaches
are mostly restricted to finite time horizon problems.

However, there are successful reachability analysis techniques that fail to fit neatly
into any of the categories above, or deserve to be described on their own.
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Constraint Solving Approaches: An important class of approaches uses constraint
solvers to show that no counterexample trace with a given length/time bound exists for
a reachability problem. Ratschan and She achieve this by constructing an abstraction
that is refined using ideas borrowed from constraint programming [105]. Franzle et al
use a bounded-model checking approach that encodes the reachability problem as a set
of constraints [55,72]. More recently, Kong et al build on top of their previous work on
the dReal solver for nonlinear constraints [57] to build a reachability analyzer called
dReach [80]. An important advantage of constraint solvers lies in their ability to search
in a non chronological manner. I.e, they can search for counterexamples or prove their
absence without necessarily having to start from time t = 0. However, the same factors
that make the problem challenging hamper their performance. For one, the ability to
reason about dynamical systems inside a constraint solver is a challenge. dReach uses
other reachability analysis tools for nonlinear dynamical systems to approximate the
solution to ODEs. Another challenge lies in choosing how to iteratively subdivide a
large state-space during constraint solving in order to zero in on a counterexample or
rule out counterexamples altogether.
Falsification: Whereas most approaches cited so far focus on verification, which is
typically defined as “the process of establishing the truth, accuracy, or validity of some-
thing”, approaches for falsification focus on disproving correctness by searching for
a counterexample that establishes that an unsafe state is reachable starting from some
initial state. Recently, there have been many approaches towards falsification based on
using robustness of trajectory (its minimum distance to the unsafe set) as a fitness func-
tion that is minimized repeatedly using optimization [1]. Although they do not have
guarantees of exhaustiveness, falsification techniques have been more successful in the
industry wherein they provide a form of “smart fuzz-testing” for CPS [78,49].

3 Set-Propagation Approaches

In this section, we present the so-called set propagation approach for solving the reach-
ability analysis problem. These approaches construct an over-approximation of the
reachable set by (a) choosing a family of set representations such as ellipsoids to over-
approximate sets of states; and (b) iteratively propagating the reachable state over-
approximation forward in time according to the semantics of the hybrid automaton.
Rather than attempt an exhaustive survey, we will briefly describe these approaches
and highlight some of the successes. As mentioned earlier, a comprehensive survey of
many of these techniques is available elsewhere [4]. Set-propagation approaches are
analogous to techniques such as symbolic model checking and abstract interpretation
that are commonly used for verifying digital circuits and computer software [16,45].

3.1 Linear Hybrid Systems

Linear Hybrid Systems (LHS) are characterized by multiple modes (also known as loca-
tions) and continuous states x⃗. A configuration, also called a state, of an LHS is denoted
by a pair (x⃗, ℓ) such that x⃗ is the current valuation of the state variables and ℓ is the cur-
rent location. Starting from an initial state, an LHS evolves in the following way.
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Fig. 4. Flowpipe construction for LHS.

Continuous Evolution. The state variable values change continuously within the loca-
tion invariant under the continuous dynamics which is a linear ODE in the form of
ẋ = Ax⃗ + Bw⃗ associated with the current location. The parameters w⃗ are used to
represent range-bounded uncertainties if there is any, and the invariant is defined by a
conjunction of linear constraints over x⃗. In a continuous evolution, the location of the
system does not change, and the values of x⃗ should satisfy the invariant.
Discrete Jump. The discrete dynamics of an LHS is defined by a set of transitions. The
system instantly updates its current location according to the specification of a transi-
tion. More precisely, a transition can be made by satisfying the following requirements:
(a) The current and new locations should be the start and end locations respectively of
the transition; (b) The current state variable values should satisfy the transition guard
which is defined by a conjunction of linear constraints over x⃗. A transition may also
update the state variables x⃗ according to its linear reset rule.

Set-propagation approaches for LHS compute reachable sets for a bounded time
horizon [0, T ] 1. We illustrate the main algorithm in Fig. 4. Starting from a given initial
state set X0, the algorithm first over-approximates the reachable set by a convex set
Ω0 in the time interval of [0, δ] which is called the first time step according to a given
step size δ > 0. Next, we iteratively compute the sets Ω1, . . . , ΩN−1, that are over-
approximations of the reachable sets over the time intervals [δ, 2δ], . . . , [(N −1)δ,Nδ],
respectively, until Nδ ≥ T . This step is usually done by repeatedly computing the
flowpipes using the recurrent relation Ωi = eAδΩi−1 ⊕ V wherein V is a convex set
containing the impact from all uncertainties in a one-step evolution. When there is an
invariant associated to the location, the flowpipes should also be intersected with it in
order to exclude the unreachable states outside of the invariant. Finally, we compute
over-approximations for the reachable sets under all possible discrete jumps, which
themselves form initial sets in new locations. The algorithm repeatedly performs the
three steps mentioned above, until all of executions in the time horizon are explored.

In order to represent sets, existing approaches use geometric objects such as poly-
topes [70,66,39,109], zonotopes [62] and ellipsoids [81], or symbolic representations
for convex sets such as support functions [83]. These representations are closed un-
der key operations that are performed by the reachability algorithms, including linear
transformation and Minkowski sum in computing the recurrence relation. However, it
is still challenging to handle discrete jumps, the main difficulty comes from the compu-

1 Such reachable sets are often called flowpipes following the early work of Feng Zhao [120]
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tation of the intersection with transition guards. Although a few of the representations
such as polytopes are closed under intersections with sets defined by linear constraints,
no representation can efficiently perform all the required set operations. Hence, much
effort has been devoted to developing effective and efficient over-approximation algo-
rithms for various intersection types, including ellipsoid/ellipsoid intersections [106],
zonotope/hyperplane intersections [63], zonotope/polyhedron [3,5], and support func-
tion/support function [65]. The approaches are integrated into verification tools such as
SpaceEx [56] and CORA [2].

Besides the above set-based approaches, a novel approach by Duggirala et al focuses
on producing approximations at discrete time points using numerical simulations and
the super-position principle for linear dynamics [51]. Such a technique is used in the
tool Hylaa [18].

3.2 Nonlinear Hybrid Systems

Fig. 5. Illustration of conservative lin-
earization for nonlinear ODEs

NonLinear Hybrid Systems (NLHS) have an anal-
ogous structure to LHS except that the continuous
dynamics may be defined by nonlinear ODEs, the
guards and invariants may be defined by nonlin-
ear constraints, and the reset rules of the jumps
may also be nonlinear. Due to these nonlineari-
ties, the reachability analysis on NLHS calls for
a different class of approaches. The challenges
are from answering the following two questions:
(i) How to compute the flowpipes for nonlinear
ODEs? and (ii) How to compute nonlinear flow-
pipe/guard intersections? We may categorize ex-
isting approaches as follows:

Conservative Linearization of ODEs: It has
already been shown that flowpipes for nonlinear
ODEs can be effectively computed by repeatedly
calling the following steps: (1) Conservatively lin-
earizing the ODE to a range-bounded linear dif-
ferential inclusion in the form of ˙⃗x ∈ Ax⃗ + U in
a local neighborhood in the state space; (2) Computing the flowpipes for the linear dif-
ferential inclusion in the neighborhood. The algorithm goes to the step (1) with the last
flowpipe which almost exceeds the neighborhood.

Althoff et al. [6] presented a framework that computing the reachable sets for a
nonlinear system by conservatively linearizing the ODE on the fly. The linearization
error is controlled by splitting the reachable sets. A more complex framework for over-
approximating a nonlinear ODE by an LHS, which is also called hybridization, is pre-
sented by Dang et al. [46,47]. The approach computes bounded state subspaces which
are called hybridization domain along the system executions, and linearizes the dynam-
ics in those subspaces. Then the flowpipes can be obtained using an existing method for
linear dynamics. Fig. 5 illustrates hybridization approach. The flowpipes for the non-
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linear ODE ˙⃗x = f(x⃗) are computed based on two linear differential inclusions, each of
which is an over-approximation of the nonlinear dynamics in its hybridization domain.

Verified Set-Valued Integration: Verified integration are set-based techniques which
were introduced to provide guaranteed solutions for initial value problems: i.e, find
x⃗(t) for some time t > 0 for an ODE defined by ˙⃗x = f(x⃗, t) with an initial condition
x⃗(0) ∈ X0. The main idea of the techniques is to iteratively compute a reachable set
over-approximation over a time step. In each integration step, starting from the over-
approximation set obtained at the end of the previous step, a new set which is guaran-
teed to contain the reachable set in the current step is computed by a set-based arith-
metic such as interval arithmetic, and then verified by ensuring the contractiveness of
the Picard operator over the set [91]. Several well-developed interval-based integration
methods have already been implemented and released as tools such as VNODE-LP [95]
and CAPD [77]. In order to better control the overestimation, Berz and Makino [87,25]
developed the Taylor model-based integration approach. A Taylor Model (TM) is de-
noted by a pair (p, I) such that p is a polynomial and I is an interval remainder. A
function f(x⃗) is over-approximated by a TM (p(x⃗), I) over an interval domain, if for
all x⃗ ∈ D, we have that f(x⃗) ∈ p(x⃗) + I . Verified integration methods are also used in
some constraint solving-based verification tools such as iSAT [54] and dReach [58].

Although the nonlinear continuous dynamics of an NLHS can be handled by the
above methods, it is still very challenging to deal with the flowpipe/guard intersec-
tions since the guards may be defined by nonlinear constraints. Many reachability
analysis frameworks or tools compute these intersections by constraint solving. Ari-
adne [23,24] uses intervals which are obtained from merging the interval solutions of
the constraints defining the guard and flowpipes. In [104], Ramdani and Nedialkov de-
scribed a method to compute an intersection by solving a constraint satisfiability prob-
lem, and use branch-and-prune to find the solution boxes. The method developed by
Chen et al. [32] uses a combination of domain contraction and range over-approximation
to over-approximate a TM flowpipe/guard intersection by a TM, and it is later imple-
mented in the tool Flow* [33].

Besides, some other approaches such as the technique implemented in the tool
C2E2 [50] which uses set propagation method under the hood but simulates trajectories
to construct discrepancy functions.

We have briefly described reachability analysis techniques based on set-propagation
in this section. Whereas the approaches for linear hybrid systems can now be considered
mature by most reasonable standards, the same cannot be said for general nonlinear
hybrid systems. For instance, our own tool Flow* supports many different heuristic
strategies for computing reachable sets efficiently. The choice of such a strategy requires
setting time steps, polynomial orders, aggregation heuristics and many other details
that are internal to the algorithm. However, different choices of these parameters yield
vastly different results in terms of computation speed and the overestimation error in
the results. Understanding the interplay between these parameters will help improve
the usability of nonlinear reachability analysis techniques.
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4 Scaling Up Reachability Analysis

In this section, we briefly describe some novel approaches that have been applied to
scale up reachability analysis, especially for nonlinear systems. As discussed previ-
ously, the work of Bak et al cleverly exploits the sparsity in the system’s dynamics as
well as the properties of the initial and unsafe sets to compute the projections of the
reachable sets over linear systems with billions of state variables [19]. In this section,
we will discuss some recent work on scaling up reachability analysis.

Exploiting Monotonicity: Monotone systems are those where there is a partial order
between states in the state-space such that if x⃗(0) ⪯ y⃗(0) for two initial states, then
x⃗(t) ⪯ y⃗(t) for the respective trajectories encountered starting from these initial states.
Monotonicity is natural in many types of systems such as traffic networks. Coogan
and Arcak show how monotone systems lend themselves to efficient computation of
abstractions that can be used to solve reachability analysis problems [44,43]. In fact,
their work also extends the classic notion of monotonicity to apply to a wider class of
systems. Under these monotonicity assumptions, it can be shown that the reachable set
for a hyper-rectangular set is obtained precisely by simulating two diagonally opposite
corner points. As a result, it is possible to solve verification problems for monotone
systems with large state spaces.

Exploiting Symmetries: Another approach that exploits special structure in the sys-
tem concerns symmetries in the system description. These symmetries can be discrete
symmetries wherein permutations of the state variables can lead to the original system
back. The permutations define an equivalence class amongst the state variables, and
therefore, a smaller system can be obtained by “lumping” system variables together in
a natural manner. This approach has been shown to work for nonlinear systems derived
from gene regulatory networks [28]. However, its application requires that the initial
conditions of the lumped variables agree with each other. Another approach considers
continuous (Lie) symmetries, including invariance of the system’s dynamics to trans-
lations and rotations of the coordinate frames. This is a powerful approach that can be
exploited to speed up reachability analysis. Maidens and Arcak exploit symmetries for
backward reachability in order to synthesize controllers using the dynamic program-
ming framework [86]. A different approach to ensuring efficiency by exploiting sym-
metry is considered by Sibai et al [111], particularly for the case when a system involves
multiple agents. Their approach uses previously caches reachable set computations: for
instance, some set Xt+∆ is reachable from some other set Xt in time ∆. Symmetry al-
lows us to reuse this information for a different set Y that may not be the same asXt but
related to it through a transformation. An almost identical approach was also adopted
(independently) by the second author jointly with Chou and Yoon, wherein they show
how reachable sets can be pre-computed offline in order to support rapid table lookups
to perform predictive runtime monitoring [38]. This approach was designed specifically
to exploit invariance to rotation and translations for vehicle models.

Decompositions based on System Structure: Decompositions are a very promising
approach to reducing reachability problems for systems over higher dimensional state-
spaces into problems that involve multiple systems over a subset of the state variables.
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The key idea is to consider how the state-variables in the dynamics depend on each
other through a dependency graph.

ẋ = v cos(ψ)
ẏ = v sin(ψ)

ψ̇ = u1

v̇ = u2

u1(t+∆) = f1(x(t), y(t))
u2(t+∆) = f2(x(t), y(t))

x

y

ψ

v

u1

u2

Fig. 6. A 2 dimensional Dubin’s vehicle model and its de-
pendency graph. The dashed line shows feedback from the
vehicle position at a previous time step to the control in-
puts at the subsequent time step.

Figure 6 shows an exam-
ple of a Dubin’s vehicle with a
”sampled-data” control strategy
where the control inputs u1, u2
are computed using the state
at a previous time step. There-
fore, for the duration of a time
step ∆, they may be thought
of as a constant. Thus, instead
of considering 4 state variables
together, the reachability algo-
rithm can separately integrate
the subsystems for ψ, v and use
these in turn to separately com-
pute reachable set estimates for
x, y. These are effectively sys-
tems with a single state variable.
This idea was considered inde-
pendently by Mo Chen et al [30,29] in the context of the Hamilton-Jacobi approach and
by the authors of this paper in the context of nonlinear set-based reachability [35]. In
both cases, a dependency graph is constructed and decomposed into strongly connected
components. Furthermore, our work also focused on approximate methods by “cutting”
continuous feedback loops. Decomposition methods are very powerful in that they al-
low us to treat “loosely coupled” systems with hundreds of state variables. Recently,
Sankaranarayanan used a tree-width decomposition approach to consider overlapping
partitions of the system variables. The system is then projected into multiple abstract
subsystems each involving one of the partitions. The key idea is that the partitions can
exchange information using an algorithm inspired by belief propagation [108].

Although, we have presented a few promising approaches to scaling up reachabil-
ity analysis, there are currently numerous challenges that require new approaches. We
mention a few promising areas for future work.

Model Order Reductions: The reachability problem for large CPS often involve
safety properties that are expressed over very few system variables. It is thus interesting
to consider techniques akin to model-order reductions that can speed up reachability
analysis. Model-order reductions have been explored in the past by using standard ap-
proaches in that area to reduce the dimensionality of the state-space [67,37]. However,
these approaches do not preserve soundness. Recent approaches that have exploited the
fact that initial conditions and unsafe sets involve a few of the system variables with
great success and without sacrificing soundness for linear dynamical systems [19]. A
new general approach to such reductions that allows us to avoid computing reachability
information for “unnecessary” state variables in a sound manner is needed.

Koopman Operator-based Linearization: Another promising approach is to convert
linear systems into nonlinear systems in a higher dimensional space through the theory
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of Koopman operators [90]. The key idea here is to consider a new state-space in terms
of functions {f1(x⃗), . . . , fN (x⃗)} wherein the derivative of each fi can be written as
an affine function of the other functions. This helps us abstract the trajectories of the
system by a linear system. Reachability analysis over this system gives us reachable
set over-approximations of the original nonlinear systems. The key here is to discover
appropriate basis functions fi (so-called Koopman invariant subspace), and there is no
guarantee that these functions will be polynomials. Earlier work by Sankaranarayanan
explored an iterative approach to discovering a basis where fi are all polynomials [107].
However, there is no guarantee that such a basis would exist. More recently, Bak et
al present an algorithm that assumes that a Koopman-invariant subspace is known or
approximated through techniques such as dynamic mode decomposition. It then shows
how the resulting reachability analysis problem can be solved [17]. In general, ideas
such as Koopman operator-based linearization provide alternatives to existing ways of
abstracting nonlinear dynamics which could be an interesting way forward to make
reachability analysis more scalable.

5 Neural Network Controlled Systems

With the rapid development of machine learning techniques, more and more CPS are
using learning-enabled components such as neural networks for making decisions in
strategic situations. Since most of such learning-enabled CPS are safety-critical, it is
important to develop new methods for ensuring their safety. However, most of the ver-
ification methods developed for pure discrete or even hybrid systems can hardly be
applied due to the complex system behavior produced by the interaction between the
learning-enabled components and the others.

Recently, a great amount of work has been devoted to developing new formal meth-
ods for verifying neural network controlled systems (NNCS) which are a basic class
of learning-enabled CPS but very challenging to verify. Fig.7 shows the formal model
of NNCS. It is a class of sampled-data systems in which the plant, i.e., the continuous
dynamics, is defined by an ODE over the state variable(s) x and the control input(s) u,
while the controller is a Feed-forward Neural Network (FNN). Given a control step size
δc > 0, at the time t = kδc for every k = 0, 1, . . . , the controller reads the current state
of the plant and computes the control input which will be used immediately for δc-time,
i.e., in the current control step, by the plant. Since a control input is obtained from the
FNN, the computation time is ignored in the system execution due to the fast response
of neural networks.

NNCS are continuous systems but not necessarily differentiable due to the non-
differentiable activation functions such as ReLU in the neural networks. Given an NNCS,
the system execution from an initial state x0 is deterministic and can be defined by a
flow map function Φ such that Φ(x0, t) denotes the system state at a future time t ≥ 0.
According to the behavior of NNCS, for k = 0, 1, . . . , xk = Φ(x0, kδc) is the initial
state of the (k + 1)-st control step, and the control input used in that step is derived
as uk = κ(xk) wherein κ(·) denotes the input-output mapping of the FNN controller.
Hence, not only the reachable states but also the control inputs in a system execution are
determined by the initial state x0. Fig. 8 illustrates the dependency between a reachable
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Fig. 7. Model of NNCS Fig. 8. Dependency on the initial state

state and the initial state. In the case of a set X0 of initial states, the exact reachable set
at a time t ≥ 0 is denoted byΦ(X0, t) = {Φ(x0, t) |x0 ∈ X0}, and the set of the control
inputs used in the (k + 1)-st step is given by Uk = κ(Xk) wherein Xk = Φ(X0, kδc).
The core technique in a reachability analysis approach for NNCS is an algorithm to
over-approximate the range of the flow map Φ over a time interval w.r.t. a given set of
initial states.

Most of the existing reachability analysis methods use a set-propagation scheme to
compute over-approximate reachable set segments, i.e., flowpipes, over a finite number
K of control steps. Starting with a given initial set X̂0 = X0, the main algorithm re-
peatedly performs the following two steps to compute the flowpipes in the (k + 1)-st
control step for k = 0, 1, . . . ,K − 1:
(i) Computing the output range of the controller. In this step, a set Ûk which is guaran-
teed to contain all of the control inputs in Uk is computed.
(ii) Flowpipe computation for the plant. The step computes the flowpipes for the plant
ODE ẋ = f(x, u) with the local initial set X̂k and the control input range u ∈ Ûk.
Then the local initial set of the next iteration is computed as X̂k+1 which is an over-
approximation of Φ(X0, (k + 1)δc).
They can be classified as follows, based on the over-approximation schemes.
Directly over-approximating reachable sets. A reachability analysis algorithm on NNCS
can be developed as a combination use of a method for computing FNN output ranges
and an existing flowpipe construction technique for ODEs. To do so, one may need to
use a uniform set representation for FNN output ranges and ODE flowpipes. Many FNN
output ranges analysis techniques [74,79,59,53,119,116] can be extended and work co-
operatively with the existing reachability tools for ODEs [95,33,2]. The main advantage
of this scheme is twofold. Firstly, there is no need to develop a new technique from
scratch, and the correctness of the composed approach can be proved easily based on
the correctness of the existing methods. Secondly, the performance of the approach is
often good since it can use well engineered tools as primitives. However, on the other
hand, the relationship between the control inputs and the plant states (see Fig.8) are
not explicitly represented in this approach. This may lead to a overestimation when the
plant dynamics is nonlinear or the initial set is large, making the resulting bounds less
useful in proving properties of interest.
Over-approximating flow map functions. More accurate over-approximations can be
obtained if a reachability method tries to over-approximate the flow map function Φ
instead of its image. It is well-known that functional over-approximations such as TMs
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have an apparent advantage in accuracy over the pure range over-approximation meth-
ods for nonlinear dynamical systems [31]. Recent work has applied interval, polynomial
and TM arithmetic to obtain over-approximations for NNCS flow maps [52,73,76].
Those techniques are often able to compute more accurate flowpipes than the meth-
ods in Category (A). On the other hand, the functional over-approximation methods
are often computationally expensive due to the computation of nonlinear multivariate
polynomials for tracking the dependencies.

Neural Network Control Systems are an emerging area that has seen an explosion
of interest in the recent years. Persistent challenges include the need to handle ever
larger networks and also the need to integrate rich sensor inputs from sensors such as
camera and LiDAR. This poses a hard modeling challenge that requires us to link the
state of the system with the possible inputs that these sensors may provide. The work of
Shoukry et al presents an interesting case for solving this challenge when the system’s
operating environment is known [113]. This paper represents a very promising line of
work that can benefit from further investigation.

6 Conclusions

We have thus far introduced a wide variety of techniques that have been explored for
solving the reachability analysis of CPS, integrating ideas from diverse disciplines,
ranging from Logic to control theory. We have also briefly surveyed exciting new fron-
tiers, including the emerging topic of verifying safety of systems controlled by neural
networks. While it is clear that the research on reachability analysis techniques have
come a long way, numerous challenges remain. For one, many of the techniques remain
inaccessible to control engineers due to many reasons. There is a gap between the rich
expressive modeling formalisms that are used by engineers such as Simulink/Stateflow,
and the capabilities of existing reachability analysis tools that work on hybrid automata
models. The translation from one to another is not simple. Tools like C2E2 are seek-
ing to bridge this gap by allowing model specifications inside Stateflow [50], but more
needs to happen along this front before such tools can be said to be developer friendly.
Besides these practical concerns, there are numerous open challenges and new frontiers.
One such area that has not been mentioned in this survey concerns the reachability anal-
ysis of stochastic hybrid systems. Another open area concerns reachability analysis for
systems whose feedback control inputs are specified in an implicit manner: i.e, they are
specified as minimizers of some cost functions. Such systems arise from many domains
such as model-predictive control algorithms or physics-based models that are described
using potential fields.

To conclude, we revisit the question in the title “Are we there yet?”. Briefly, we
would conclude at this time that reachability analysis of CPS has gone places without
yet arriving at a destination!
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