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Announcements

• PA #2 due Friday March 18 11:55 pm -
note extension of a day

• Read chapters 11 and 12



From last time...

• Memory hierarchy
• Memory management unit (MMU)

– relocates logical addresses to physical addresses 
using base register

– checks for out of bounds memory references using 
limit register

• Address binding at run time
• Swapping to/from backing store / disk

– fragmentation of main memory
• first fit, best fit, worst fit



Paging
• One of the problems with fragmentation is finding a sufficiently large 

contiguous piece of unallocated memory to fit a process into
– heavyweight solution is to compact memory

• Another solution to external fragmentation is to divide the logical 
address space into fixed-size pages
– each page is mapped to a similarly sized physical frame in main 

memory (thus main memory is divided into fixed-size frames)
– the frames don’t have to be contiguous in memory, so each process 

can now be scattered throughout memory and can be viewed as a 
collection of frames that are not necessarily contiguous

• this solves the external fragmentation problem: when a new process needs 
to be allocated, and there are enough free pages, then find any set of free 
pages in memory

– Need a page table to keep track of where each logical page of a 
process is located in main memory, i.e. to keep track of the mapping of 
each logical page to a physical memory frame



Paging
• A page table for each process is maintained by the 

OS
• Given a logical address, MMU will determine to which 

logical page it belongs, and then will consult the page 
table to find the physical frame in RAM to access
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Paging
• user’s view of memory is still as one contiguous block of 

logical address space
– MMU performs run-time mapping of each logical address to a 

physical address using the page table
• Typical page size is 4-8 KB

– example: if a page table allows 32-bit entries, and if page size is 
4 KB, then can address 244 bytes  = 16 TB of memory

• No external fragmentation, but we get some internal 
fragmentation
– example: if my process is 4001 KB, and each page size is 4 KB, 

then I have to allocate two pages = 8 KB, so that 3999 KB of 2nd

page is wasted due to fragmentation internal to a page
• OS also has to maintain a frame table that keeps track of 

what frames are free



Paging
• Conceptually, every logical address can be divided into two parts:

– most significant bits = page # p, used to index into page table to retrieve 
the corresponding physical frame f

– least significant bits = page offset d

CPU p d

logical address physical address

f

p

Page Table f d

RAM



Paging
• Implementing a page table

– option #1: use dedicated bank of hardware registers to store the
page table

• fast per-instruction translation
• slow per context switch - entire page table has to be reloaded
• limited by being too small - some page tables can be large, e.g. 1 

million entries
– option #2: store the page table in main memory and just keep a 

pointer to the page table in a special CPU register called the 
Page Table Base Register (PTBR)

• can accommodate fairly large page tables
• fast context switch - only PTBR needs to be reloaded
• slow per-instruction translation, because each instruction fetch 

requires two steps:
– finding the page table in memory and indexing to the appropriate spot 

to retrieve the physical frame # f
– retrieving the instruction from physical memory frame f



Paging

• Solution to option #2’s slow two-step 
memory access:
– cache a subset of page table 

mappings/entries in a small set of CPU 
buffers called Translation-Look-aside Buffers 
(TLBs)

– Several TLB caching policies:
• cache the most popular or frequently referenced 

pages in TLB
• cache the most recently used pages



Paging
• MMU in CPU first looks in TLB’s to find a match for a given logical 

address
– if match found, then quickly call main memory with physical address 

frame f (plus offset d)
• this is called a TLB hit
• TLB as implemented in hardware does a fast parallel match of the input 

page to all stored values in the cache - about 10% overhead in speed 
– if no match found, then

1. go through regular two-step lookup procedure: go to main memory to find 
page table and index into it to retrieve frame #f, then retrieve what’s stored 
at address <f,d> in physical memory

2. Update TLB cache with the new entry from the page table
– if cache full, then implement a cache replacement strategy, e.g. Least Recently 

Used (LRU) - we’ll see this later
• This is called a TLB miss

• Goal is to maximize TLB hits and minimize TLB misses



Paging
• Paging with TLB and PTBR
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Paging
• Shared pages

– if code is thread-safe or reentrant, then multiple processes can 
share and execute the same code

• example: multiple users each using the same editor (vi/emacs) on 
the same computer

– in this case, page tables can point to the same memory frames
– example: suppose a shared editor consists of two pages of 

code, edit1 and edit2, and each process has its own data RAM
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Paging
• Each entry in the page table can actually 

store several extra bits of information 
besides the physical frame # f
– R/W or Read-only bits - for memory protection, 

writing to a read-only page causes a fault and 
a trap to the OS

– Valid/invalid bits - for memory protection, 
accessing an invalid page causes a page fault

• Is the logical page in the logical address 
space?

• If there is virtual memory (we’ll see this later), is 
the page in memory or not?

– dirty bits - has the page been modified for 
page replacement?  (we’ll see this later in 
virtual memory discussion)
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Paging
• Problem with page tables: they can get very large

– example: 32-bit address space with 4 KB/page (212) implies that 
there are 232/212 = 1 million entries in page table per process

– it’s hard to find contiguous allocation of at least 1 MB for each 
page table

– solution: page the page table!  this is an example of hierarchical 
paging.

• subdividing a process into pages helped to fit a process into 
memory by allowing it to be scattered in non-contiguous pieces of 
memory, thereby solving the external fragmentation problem

• so reapply that principle here to fit the page table into memory, 
allowing the page table to be scattered non-contiguously in memory

• This is an example of 2-level paging.  In general, we can apply N-
level paging.



Paging RAM

• Hierarchical (2-level) paging:
– outer page table tells where each part of the 

page table is stored, i.e. indexes into the page 
table
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Paging
• Hierarchical (2-level) paging divides the logical address 

into 3 parts:
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