
Memory Management and
Paging

CSCI 3753 Operating Systems
Spring 2005

Prof. Rick Han

Announcements

• PA #2 due Friday March 18 11:55 pm -
note extension of a day

• Read chapters 11 and 12

From last time...

• Memory hierarchy
• Memory management unit (MMU)

– relocates logical addresses to physical addresses
using base register

– checks for out of bounds memory references using
limit register

• Address binding at run time
• Swapping to/from backing store / disk

– fragmentation of main memory
• first fit, best fit, worst fit

Paging
• One of the problems with fragmentation is finding a sufficiently large

contiguous piece of unallocated memory to fit a process into
– heavyweight solution is to compact memory

• Another solution to external fragmentation is to divide the logical
address space into fixed-size pages
– each page is mapped to a similarly sized physical frame in main

memory (thus main memory is divided into fixed-size frames)
– the frames don’t have to be contiguous in memory, so each process

can now be scattered throughout memory and can be viewed as a
collection of frames that are not necessarily contiguous

• this solves the external fragmentation problem: when a new process needs
to be allocated, and there are enough free pages, then find any set of free
pages in memory

– Need a page table to keep track of where each logical page of a
process is located in main memory, i.e. to keep track of the mapping of
each logical page to a physical memory frame

Paging
• A page table for each process is maintained by the

OS
• Given a logical address, MMU will determine to which

logical page it belongs, and then will consult the page
table to find the physical frame in RAM to access

page 0

page 1

page 2

page 3

page 4

Logical
page

Physical
frame

0 1
1 4
2 3
3 7
4 0

Logical Address
Space

page 3

page 4

page 0

unallocated

page 2

page 1

RAM

0

1

2

3

4

5

6

7

unallocated

unallocated

frame
#

Page Table

could be allocated to
a new process P2

Paging
• user’s view of memory is still as one contiguous block of

logical address space
– MMU performs run-time mapping of each logical address to a

physical address using the page table
• Typical page size is 4-8 KB

– example: if a page table allows 32-bit entries, and if page size is
4 KB, then can address 244 bytes = 16 TB of memory

• No external fragmentation, but we get some internal
fragmentation
– example: if my process is 4001 KB, and each page size is 4 KB,

then I have to allocate two pages = 8 KB, so that 3999 KB of 2nd

page is wasted due to fragmentation internal to a page
• OS also has to maintain a frame table that keeps track of

what frames are free

Paging
• Conceptually, every logical address can be divided into two parts:

– most significant bits = page # p, used to index into page table to retrieve
the corresponding physical frame f

– least significant bits = page offset d

CPU p d

logical address physical address

f

p

Page Table f d

RAM

Paging
• Implementing a page table

– option #1: use dedicated bank of hardware registers to store the
page table

• fast per-instruction translation
• slow per context switch - entire page table has to be reloaded
• limited by being too small - some page tables can be large, e.g. 1

million entries
– option #2: store the page table in main memory and just keep a

pointer to the page table in a special CPU register called the
Page Table Base Register (PTBR)

• can accommodate fairly large page tables
• fast context switch - only PTBR needs to be reloaded
• slow per-instruction translation, because each instruction fetch

requires two steps:
– finding the page table in memory and indexing to the appropriate spot

to retrieve the physical frame # f
– retrieving the instruction from physical memory frame f

Paging

• Solution to option #2’s slow two-step
memory access:
– cache a subset of page table

mappings/entries in a small set of CPU
buffers called Translation-Look-aside Buffers
(TLBs)

– Several TLB caching policies:
• cache the most popular or frequently referenced

pages in TLB
• cache the most recently used pages

Paging
• MMU in CPU first looks in TLB’s to find a match for a given logical

address
– if match found, then quickly call main memory with physical address

frame f (plus offset d)
• this is called a TLB hit
• TLB as implemented in hardware does a fast parallel match of the input

page to all stored values in the cache - about 10% overhead in speed
– if no match found, then

1. go through regular two-step lookup procedure: go to main memory to find
page table and index into it to retrieve frame #f, then retrieve what’s stored
at address <f,d> in physical memory

2. Update TLB cache with the new entry from the page table
– if cache full, then implement a cache replacement strategy, e.g. Least Recently

Used (LRU) - we’ll see this later
• This is called a TLB miss

• Goal is to maximize TLB hits and minimize TLB misses

Paging
• Paging with TLB and PTBR

CPU p d

logical address physical address

f d

logical
page #

physical
frame #

TLB

TLB hit

1

p

f

Page Table

RAM

target
page f

PTBR

2a

TLB
miss

2b

update TLB

Paging
• Shared pages

– if code is thread-safe or reentrant, then multiple processes can
share and execute the same code

• example: multiple users each using the same editor (vi/emacs) on
the same computer

– in this case, page tables can point to the same memory frames
– example: suppose a shared editor consists of two pages of

code, edit1 and edit2, and each process has its own data RAM

data1

data2

0
P1’s logical

address space
P1’s page

table
P2’s logical

address space
P2’s page

table 1

2edit1 3

5

0

edit1 3

5

1

0 0

edit1

edit2

3edit2 edit21 1

4data1 data22 2

5

Paging
• Each entry in the page table can actually

store several extra bits of information
besides the physical frame # f
– R/W or Read-only bits - for memory protection,

writing to a read-only page causes a fault and
a trap to the OS

– Valid/invalid bits - for memory protection,
accessing an invalid page causes a page fault

• Is the logical page in the logical address
space?

• If there is virtual memory (we’ll see this later), is
the page in memory or not?

– dirty bits - has the page been modified for
page replacement? (we’ll see this later in
virtual memory discussion)

Page Table

2 1 0 1

8 0 1 0

4 0 0 0

7 1 1 0

phys
fr #

R/W or
Read only

0

1

2

3

Valid/
Invalid

Dirty/
Modified

Paging
• Problem with page tables: they can get very large

– example: 32-bit address space with 4 KB/page (212) implies that
there are 232/212 = 1 million entries in page table per process

– it’s hard to find contiguous allocation of at least 1 MB for each
page table

– solution: page the page table! this is an example of hierarchical
paging.

• subdividing a process into pages helped to fit a process into
memory by allowing it to be scattered in non-contiguous pieces of
memory, thereby solving the external fragmentation problem

• so reapply that principle here to fit the page table into memory,
allowing the page table to be scattered non-contiguously in memory

• This is an example of 2-level paging. In general, we can apply N-
level paging.

Paging RAM

• Hierarchical (2-level) paging:
– outer page table tells where each part of the

page table is stored, i.e. indexes into the page
table

outer page
table

page table

dotted arrow means
“go to memory and
retrieve the frame
pointed to by the
table entry”

Paging
• Hierarchical (2-level) paging divides the logical address

into 3 parts:

CPU p2 d

logical address physical address

f1

p1

Outer Page Table

f2 d

RAM

p1

f2

p2

Page Table

	Memory Management and Paging
	Announcements
	From last time...
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging

