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1. Introduction

Natural Computing is concerned with human-designed computing inspired by na-

ture as well as with computation taking place in nature. The latter strand of re-

search investigates in terms of information processing, processes taking place in

nature, and the computational nature of biochemical reactions is a research theme

belonging here.

Reaction systems are a formal framework for investigating processes carried out

by biochemical reactions in living cells. The underlying idea here is that the inter-

actions between biochemical reactions as well as the functioning of single reactions

are based on the mechanisms of facilitation and inhibition.

This paper, based on the invited lecture at DLT 2010 [6], is an introduction

to reaction systems directed at researchers in theoretical computer science. It first

provides the basic notions related to reaction systems together with the underlying

intuition and motivation (based on the biochemistry of living cells). To provide a

practice of basic notions, we then discuss two examples of “programming” with
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reaction systems: an implementation of a binary counter and an implementation of

a finite, deterministic transition system.

The paper then continues with a short tour of three recent research themes.

We hope that the three sections corresponding to these themes, together with the

discussion section, will provide the reader with a “taste” of theoretical research in

reaction systems.

2. Preliminaries

In this paper we use standard mathematical terminology and notation. To avoid

misunderstandings, we recall some notions and notation.

We use Z+ to denote the set of positive integers. Unless otherwise clear, we

consider finite sets only. The cardinality of a set X is denoted by |X |, and the

powerset ofX is denoted by 2X . The symmetric difference of sets Z1 and Z2, defined

by (Z1 \ Z2) ∪ (Z2 \ Z1), is denoted by Z1 ⊕ Z2. The composition of functions f

and g is denoted by gf (first f , then g). Functions, f : X → Y and g : U → V ,

are isomorphic provided that there exist bijections p : X → U and h : Y → V such

that hf = gp.

A directed graph (digraph) is given by an ordered pair (V,E), where V is the set

of vertices and E is the set of directed edges.

Let τ = W0,W1, · · · ,Wn be a sequence of sets. For a set Q, the Q-projection of

τ is the sequence of sets projQ(τ) = W0 ∩Q,W1 ∩Q, · · · ,Wn ∩Q.

3. Reactions and Reaction Systems

In this section we recall the basic notions concerning reaction systems (see, e.g.,

[3, 4, 5]). A biochemical reaction can take place if all of its reactants are present in

a given state and none of its inhibitors is present; when a reaction takes place, it

creates its products. This intuition leads to the following definition.

Definition 1. A reaction is a triplet a = (R, I, P ), where R, I, P are finite

nonempty sets with R ∩ I = ∅. If S is a set such that R, I, P ⊆ S, then a is a

reaction in S.

Note that both the reactant set and the inhibitor set are required to be non-

empty so that all products are produced from at least one reactant and that every

reaction can be inhibited in some way. The notion of a reaction without an inhibitor

can be simulated by introducing an artificial inhibitor that is never produced by

any reaction.

The sets R, I, P are also written Ra, Ia, Pa, and called the reactant set of a, the

inhibitor set of a, and the product set of a, respectively. Also, Ma = Ra ∪ Ia is the

set of resources of a, ma = |Ma|, and rac(S) denotes the set of all reactions in S.

Note that since Ra and Ia are both nonempty, we always have |Ma| ≥ 2.
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Example 2. Let S = {1, 2, 3, 4} and a = ({3}, {1, 2}, {1, 2, 4}). Then a ∈ rac(S)

and Ma = {1, 2, 3}.

Definition 3. Let T be a finite set.

(1) Let a be a reaction. Then a is enabled by T , denoted by ena(T ), if Ra ⊆ T and

Ia∩T = ∅. The result of a on T , denoted by resa(T ), is defined by: resa(T ) = Pa

if ena(T ), and resa(T ) = ∅ otherwise.

(2) Let A be a finite set of reactions. The result of A on T , denoted by resA(T ), is

defined by: resA(T ) =
⋃

a∈A resa(T ).

The intuition behind T is that of a state of a biochemical system, i.e., a set

of biochemical entities present in the current biochemical environment. Thus a is

enabled by T if T separates Ra from Ia, i.e., Ra ⊆ T and Ia∩T = ∅. The result of a

set of reactions A on T is cumulative, i.e., it is the union of results of all individual

reactions from A. In fact, resA(T ) =
⋃

{resa(T ) | a ∈ A and ena(T )}.

Note that if a, b ∈ A with both a and b enabled by T , then even if Ra ∩Rb 6= ∅,

still both Pa ⊆ resA(T ) and Pb ⊆ resA(T ). Hence there is no conflict of resources

here—both a and b use Ra ∩ Rb to produce their products. Thus the nonempty

intersection of sets of reactants of enabled reactions does not constitute a conflict,

which is a major difference with standard models of concurrent systems, such as

Petri nets [10]. This setup reflects our threshold assumption: Either a resource is

present and then it is present in a “sufficient amount,” or it is not present. Conse-

quently, there is no counting in reaction systems: One deals here with sets rather

than with multisets.

Example 4. Consider again S and a from Example 2. Let T1 = {3, 4} and T2 =

{2, 3, 4}. Since ena(T1), we have res{a}(T1) = Pa = {1, 2, 4}. On the other hand,

a is not enabled on T2, and so res{a}(T2) = ∅. Let now b = ({3, 4}, {2}, {3}) be

another reaction. Then res{a,b}(T1) = Pa ∪ Pb = {1, 2, 3, 4}. Note that although

Ra ∩Rb 6= ∅, both reactions are enabled in T1 and produce their products (there is

no conflict).

We are ready now to recall the notion of a reaction system, which essentially is

just a finite set of reactions.

Definition 5. A reaction system, abbreviated rs, is an ordered pair A = (S,A)

such that S is a finite set, and A ⊆ rac(S).

The set S is called the background set of A , its elements are called entities—

they represent molecular entities (e.g., atoms, ions, molecules) that may be present

in the states of a biochemical system modeled by A . The set A is called the set of

reactions of A—note that since S is finite, so is A.

The dynamic behavior of a rs is formalized through the notion of an interactive

process.
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Fig. 1. Interactive process of a reaction system

Definition 6. Let A = (S,A) be a rs and let n ≥ 0 be an integer. An (n-step)

interactive process in A is a pair π = (γ, δ) of finite sequences such that γ =

C0, · · · , Cn and δ = D0, · · · , Dn, where C0, · · · , Cn, D0, · · · , Dn ⊆ S, D0 = ∅, and

Di = resA (Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

The notion of an interactive process is visualized in Figure 1. Note that although

in the figure each pair (Ci, Di) is shown as a pair of disjoint ovals, by definition of

an interactive process, Ci and Di do not have to be disjoint. In the figure we show

Ci and Di as disjoint ovals since otherwise (with their intersection shown) the

illustration would become too involved, especially when we move to more complex

processes in Section 6.

The sequence γ is the context sequence of π, denoted by con(π), and the

sequence δ is the result sequence of π, denoted by res(π). Then the sequence

τ = W0,W1, · · · ,Wn defined by Wi = Ci ∪ Di for all i ∈ {0, · · · , n} is the state

sequence of π, denoted by st(π), with W0 = C0 called the initial state of π (and of

τ) denoted init(π) (and init(τ)). If Ci ⊆ Di for all i ∈ {1, · · · , n}, then we say that

π (and τ) are context-independent. Note that for any n-step, context-independent

interactive process, we can take Ci = ∅ for all i ∈ {1, · · · , n} without changing the

state sequence.

The context sequence formalizes the intuition that, in general, a rs is not

a closed system, and so its behavior is influenced by its “environment.” Note

that a context-independent state sequence depends only on the initial state

W0 and its length (n+ 1). Also, in a context-independent state sequence τ =

W0, · · · ,Wi,Wi+1, · · · ,Wn, during the transition from Wi to Wi+1 all entities from

Wi − resA (Wi) vanish. This reflects our assumption of no permanency: An entity

from a current state vanishes unless it is produced/sustained by A . Clearly, if τ

is not context-independent, then an entity from a current state can be also sus-

tained (thrown in) by the context (Ci+1). This feature is also a major difference

with standard models of concurrent systems such as Petri nets ([10]).
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Consider the reaction system U = ({1, 2, 3, 4}, U), where U is the set of these

six reactions:

({1}, {3}, {2}), ({2}, {1}, {1}), ({2}, {3}, {3}),

({3}, {1, 2}, {1, 2, 4}), ({4}, {3}, {1, 2}), ({1, 3}, {2, 4}, {2, 3}).

Then the sequence τ = {1, 2, 4}, {1, 2, 3},∅ is a context-independent state sequence

of U. Notice that, e.g., W1 = D1 ∪ C1 = resU({1, 2, 4})∪∅ = {1, 2, 3}.

The set of all state sequences of a reaction system A (i.e., all state sequences of

all interactive processes in A) is denoted by STS(A), and the set of all context-

independent state sequences of A is denoted by CISTS(A).

4. Examples

4.1. A binary counter

A reaction system can act as a cyclic n-bit counter in which external signals trigger

increment or decrement operations. To build the counter, let n > 0 be an integer

and define the background set as

{p0, p1, · · · , pn−1} ∪ {dec, inc}.

The entities p0 to pn−1 are used to represent individual bits in an n-bit integer

(in a way that we’ll describe next); the dec entity is a request to decrement the

represented number by one, and the inc entity is a request to increment by one.

The representation of an n-bit unsigned integer by a state M ⊆

{p0, p1, · · · , pn−1, dec, inc} is defined by the individual entities in M . An entity

pj ∈ M represents a one in the position corresponding to 2j in an n-bit number;

hence, pj 6∈ M represents a zero in this position. For example, with n = 8, the state

{p5, p3, p1} represents 00101010 (i.e., 42 in base 10).

Our goal is to have the dec entity cause the counter to decrement by one, and

the inc entity causes an increment of one. Hence, the result of the reaction system

on {p5, p3, p1, dec} will be {p5, p3, p0} (i.e., 41 in base 10). Similarly, the result on

{p5, p3, p1, inc} will be {p5, p3, p1, p0} (i.e., 43). To accomplish this behavior, the

system has three sets of reactions described below.

(1) The first group of reactions causes bits to be retained in the next state when

there are no decrement or increment requests.

Retention: For each j with 0 ≤ j < n, define the reaction

aj = ({pj}, {dec, inc}, {pj}).

(2) The second group of reactions implements the increment operation. As fol-

lows from binary arithmetic, when a number is incremented, the least significant

zero bit is flipped to one. All the less significant bits are flipped to zeros, and higher

bits are unchanged. The needed reactions are given below.
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With an increment, flip the least significant zero to one:

For each j with 0 ≤ j < n, define the reaction

bj = ({inc, p0, p1, · · · , pj−1}, {dec, pj}, {pj}).

Note that the case of j = 0 is the reaction

b0 = ({inc}, {dec, p0}, {p0}).

The more significant bits remain:

For each j and k with 0 ≤ j < k < n, define the reaction

cj,k = ({inc, pk}, {dec, pj}, {pk}).

To analyze these rules, suppose that the least significant zero of an n-bit number

is in the 2j position, and an increment is requested. Bits that are less significant than

the 2j position will disappear because there are no enabled reactions to produce

them. Reaction bj will produce the 2j bit. And for each k with j < k < n, the

2k bits keep their original values. (In particular, the 2k bit is produced by cj,k if

and only if it was present in the original n-bit number.) Note that the counter is

cyclic: If all bits are present in a state (e.g., 11111), then an increment results in a

wrap-around to zero (e.g., 00000).

(3) The third group of reactions implements the decrement operation in a way

that’s similar to what we’ve already seen.

Flip zeros to ones when there is no one at a lower position:

For each j with 0 ≤ j < n, define the reaction

dj = ({dec}, {inc, p0, p1, · · · , pj}, {pj}).

The more significant bits remain:

For each j and k with 0 ≤ j < k < n, define the reaction

ej,k = ({dec, pj, pk}, {inc}, {pk}).

Note that the d and e rules work correctly when the 2j bit is one and all less

significant bits are zero (in which case the 2j bit is not produced for the next state).

The decrement rules also have a notable cyclic behavior: If no bits are present

(e.g., 00000), then a decrement results in a wrap-around to all ones (e.g., 11111).

We can also ask about the system’s behavior when both dec and inc are present.

In this case, every reaction is inhibited, and the next state will be empty. Hence,

this is a convenient way to request the counter to reset to zero.

We can now define the complete n-bit counter reaction system, Bn = (Sn, Bn),

in which the reaction set, Bn, is the union of the reaction sets we have thus far

presented:

Sn = {p0, p1, · · · , pn−1} ∪ {dec, inc}, and

Bn = {aj, bj , dj | 0 ≤ j < n} ∪ {cj,k, ej,k | 0 ≤ j < k < n}.
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To illustrate the system in action, let n = 4 and consider the interactive process

with this sequence of contexts:

C0 = {p1, p3}, C1 = ∅, C2 = {inc}, C3 = {inc}, C4 = {dec}, C5 = {dec, inc}.

As always, the first context, C0, is the initial state of the process; in this case, it

represents the binary number 1010. At steps 2 and 3, the context requests an incre-

ment; C4 requests a decrement; and C5 requests a reset. The complete interactive

process from these contexts is shown stepwise in the following diagram with the

corresponding binary number at the bottom of each column.
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4.2. Finite transition systems

We have seen how the rules of binary increment and decrement translate easily into

a reaction system. As a similar but more general example, we show how to trans-

late from finite deterministic transition systems to reaction systems. We assume

familiarity with the basic definitions and notation of deterministic finite transition

systems. We use these specific definitions and notations:

Definition 8. A deterministic, finite transition system is a 3-tuple, (Q,Σ, δ),

where:

Q is a finite, non-empty set of states,

Σ is a finite, non-empty set of characters (the input alphabet),

δ : Q× Σ → Q is the state-transition function.

Definition 9. Let F = (Q,Σ, δ) be a finite transition system and let n ≥ 0 be an

integer. Consider a sequence of states q0, q1, · · · , qn (with each qi ∈ Q) and a string

of characters b1...bn (with each bi ∈ Σ). If δ(qi−1, bi) = qi for each i in the range
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1 ≤ i ≤ n, then we say that q0, q1, · · · , qn is a transition sequence for the string

b1...bn, and we write:

q0
b1 // q1

b2 // · · ·
bn // qn.

For our construction, we start with a deterministic finite transition system F =

(Q,Σ, δ) with Q and Σ disjoint and furthermore |Q ∪ Σ| > 2. (We could remove

these restrictions, but the construction is clearer with these requirements in place.)

Our goal is to build a reaction system RS
F
= (SF, AF) in which the transition

sequences of F are in one-to-one correspondence with a certain kind of interactive

process of RS
F
. In particular, F has the transition sequence

p0
x1

// p1
x2

// · · ·
xn

// pn

if and only if the constructed RS
F
has the interactive process shown here:

ONMLHIJKx1

C0

ONMLHIJKx2

C1

· · · ONMLHIJKxn

Cn−1

ONMLHIJKp0

D0

ONMLHIJKp1

D1

· · · ONMLHIJKpn−1

Dn−1

ONMLHIJKpn

Dn

- - - - - - -

- - - - - - -

- - - - - - - - - -

For clarity in this construction, we have departed from the assumption that D0 is

empty; if necessary elsewhere, D0 could be made empty by placing p0 into C0.

The reaction system provides a natural representation of the transition system.

In the interactive processes, the entities in the contexts are characters from the

alphabet Σ, and the entities in the results are elements of Q. Hence, the background

set of RS
F
is constructed as the union:

SF = Q ∪Σ.

The reactions of RS
F
come from the transitions of F. In particular, suppose that

δ(p, b) = q for some p, q ∈ Q and b ∈ Σ, so that F has a transition shown here:

?>=<89:;p
b

**?>=<89:;q

Then RS
F
has a reaction, ap,b,q defined by:

ap,b,q = ({p, b}, SF − {p, b}, {q}).

Intuitively, this reaction requires p and b together to produce q. All entities other

than p and b inhibit this reaction, since such a situation would indicate an impossible

condition for a deterministic finite transition system. Altogether, the reactions of

RS
F
are exactly these transition-based reactions:

AF = {ap,b,q | δ(p, b) = q}.
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As an example, suppose that F is the following three-state transition system.

?>=<89:;q0

b

		 c
++ ?>=<89:;q1

c

kk

b
++ ?>=<89:;q2

c

		

b

kk

Then SF = {q0, q1, q2, b, c} and AF contains exactly these six reactions:

({q0, b}, {q1, q2, c}, {q0}), ({q0, c}, {q1, q2, b}, {q1}), ({q1, b}, {q0, q2, c}, {q2}),

({q1, c}, {q0, q2, b}, {q0}), ({q2, b}, {q0, q1, c}, {q1}), ({q2, c}, {q0, q1, b}, {q2}).

In the transition system, we can consider this transition sequence:

q1
b

// q2
c

// q2
c

// q2
b

// q1
c

// q0

which corresponds to this interactive process in RS
F
:

ONMLHIJKb

C0

ONMLHIJKc

C1

ONMLHIJKc

C2

ONMLHIJKb

C3

ONMLHIJKc

C4

ONMLHIJKq1

D0

ONMLHIJKq2

D1

ONMLHIJKq2

D2

ONMLHIJKq2

D3

ONMLHIJKq1

D4

ONMLHIJKq0

D5

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - -

If the transition system has only one state and one input character, then our

construction creates reactions with no inhibitors, violating Definition 1. This can

be fixed by adding an artificial entity to the background set for the purpose of

being the lone inhibitor in all reactions. The construction also fails if Q and Σ are

not disjoint, since Q and Σ must be disjoint parts of the background set in the

construction.

This paper is of a tutorial nature, so from this standpoint (and because of

space limitations), the deterministic aspect of the previous example is didactically

suitable here. But natural modifications to the construction yield the standard as

well as novel nondeterministic models. For example, we could omit the states from

the inhibitor sets of the reactions. This would allow nondeterminism via several

possible mechanisms such as multiple start states or the usual notion of a transition

relation (rather than a function). Similarly, we can determine which characters may

“occur concurrently” and which may not.

5. Combinatorics of Reaction Systems

When we consider only context-independent processes of a reaction system

A = (S,A), then the state transition function is simply the result function,

resA : 2S → 2S . In this case the current state completely determines (through

resA ) the successor state. Such a transition function may be considered as a total

function (where the empty set is a possible result) or, as a variation, we may con-

sider it to be a partial function that is undefined at any point T ⊆ S such that no
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a ∈ A is enabled by T . Hence one can consider reaction systems as specifications of

finite functions.

This functional view of reaction systems leads to questions such as how restric-

tions on reactions translate into restrictions on the ensuing result functions (see

[8]). One initial result in this direction entails the requirement that each individual

reaction has no more than a fixed number of resources. (Recall that the resources

are the combination of the reactants and the inhibitors.) In particular, a reaction

system (S,A) is an (s,m) reaction system provided that |S| = s and each reaction

a ∈ A has no more than m resources (i.e., ma ≤ m). From this definition, the family

of functions Fs,m is then defined as the set of functions that are isomorphic to the

result functions of (s,m) reaction systems (we use here the definition of function

isomorphism from our Preliminaries).

Definition 10. For integers s ≥ m ≥ 2, the family Fs,m of functions is defined as

{f | there exists an (s,m) reaction system A such that f is isomorphic to resA}

It turns out that, for a given s ≥ 2, increasing resources expands the family of

definable functions.

Theorem 11 ([8]) For all integers s ≥ 2: Fs,2 ( Fs,3 ( · · · ( Fs,s.

This result is derived in terms of result functions that are partial functions, but

an equivalent result occurs for total result functions.

At the lowest point of this hierarchy, Fs,2, all of the reactions have only a single

reactant and a single inhibitor, yet even there the functions can exhibit elaborate

iterative behavior. To understand this behavior, let T ⊆ S be a subset of the

background entities and consider the effect of repeatedly applying a result function

resA to generate the sequence T , resA (T ), resA (resA (T )), · · · . Because there are

finitely many states, any such sequence must ultimately become cyclic, as shown

in Figure 2 (using ⇒ to represent each application of resA and using resiA for the

i-fold composition of resA with itself).

T ⇒ resA (T ) ⇒ res2A (T ) ⇒
...

⇒

resj
A
(T )

⇒

⇒

resj+k−1

A
(T ) resj+1

A
(T )

⇒
⇒

...

Fig. 2. Cyclic sequence in a reaction system
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Such a sequence has two parts: the state transitions that occur before entering

the cycle, called the lead-in (of length j in Figure 2), and the transitions within

the cycle itself (of length k in Figure 2). In some sequences, the cycle is trivial,

consisting only of the empty set that repeatedly maps to itself (in which case, we

say that such a sequence, and hence the system has died). In general, though, both

the lead-in and cycle parts of a sequence can be long, and this is what we mean by

elaborate behavior. In fact, even for an (s, 2) reaction system, the length of each

part of the sequence can be exponential in the size of S:

Theorem 12 ([8]) Let k ≥ 1 be an integer. Then there exists a (3k, 2) reaction

system with a (3 ·2k−3)-step state sequence that dies; and there exists a (3(k+1), 2)

reaction system with a (3 · 2k − 1)-step cycle.

Detailed combinatorial properties of reaction system functions can be analyzed

by placing more exacting restrictions on the number and kind of reactions (see

[7]). For example, the following theorem gives a formula for the probability that a

random reaction is enabled. (A reaction (R, I, P ) with |R| = r, |I| = i and |P | = p

is referred to as a reaction of type (r, i, p); also random means that the reaction is

selected with a uniform probability distribution from the set of all possible reactions

of the given kind.)

Theorem 13 ([7]) Consider a background set of size s and a state T that contains

a certain proportion, µs, of entities from the background set. For positive integers

r, i, and p (with r+i ≤ n and p ≤ n), the probability that a random (r, i, p) reaction

is enabled by T is given by the following closed formula using binomial coefficients:
(

µs

r

)

×

(

(1− µ)s

i

)

(

s

r

)

×

(

s− r

i

) ·

For large s, this value approaches the limit µr(1−µ)i. The formula can be used

to predict the probability of a state transition from any given size to any other

given size, and these results have been confirmed via Monte Carlo experiments run

at the University of Colorado [7]. These experiments are particularly interesting in

that they study discrete transition systems that are exponentially large in the size

of the background set—and yet, they are manageable and analyzable because of the

structure provided by reaction systems.

The limit formula, µr(1−µ)i, has also been used as a basis for “designer reaction

systems”—systems that are specifically designed so that the state sequences of the

result function have very little probability of dying. This is done by selecting the

number and kind of reactions so that the expected size of the next state is quite close

to half the size of the background set. In this way, the state rarely gets too small

(causing death by lack of reactants) or too large (death by too much inhibition).

For example, random systems can be created in which the number of reactions is a
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multiple of the size of the background set. With 5.5s reactions of type (1,3,1) and

5.5s reactions of type (3,1,1), the limit formula predicts that a system will rarely

die; and, in fact, for a variety of systems with s ≥ 28, the Monte Carlo trials never

found a death.

The low probability of death is similar to the expectation for completely random

functions on exponentially large sets, but other behavior differs. For example, the

expected cycle length for a totally random function on a domain of size 2s is given

by a function that Knuth [9] called the Q-function:

Q(2s) =

√

π

2
(2s)0.5−

1

3
+

1

12

√

π

2
(2s)−0.5−

4

135
(2s)−1+

1

288

√

π

2
(2s)−1.5+O((2s)−2).

Our experimental results (see [7]) show that the 5.5s reaction systems have average

cycle lengths that approach Q(20.74s).

6. Reaction Systems with Duration

Recall that there is no permanency in reaction systems—an entity is not retained in

a transition of an interactive process unless it is either produced by some reaction

or introduced through context. On the other hand, it is well known that a decay of

entities in a biochemical environment (e.g., macromolecules in a living cell) requires

some time to be realized (the decay time). To take this into account one considers

reaction systems with duration [1]—here an entity x produced in a state Wi+1 of

an interactive process W0, · · · ,Wi+1, · · · ,Wm with 0 ≤ i ≤ m− 1 will live (will be

present/retained) at least in states Wi+1, · · · ,Wi+d(x), where d(x) is the duration

of x and m ≥ i+d(x). In the above, “produced in Wi+1” means that x ∈ resA(Wi),

where A is a reaction system with duration. In fact x can live beyond Wi+d(x)

if either x is introduced by context or x is also produced in one of the states

Wi+2, · · · ,Wi+d(x). Formally, we get the following definition.

Definition 14. A reaction system with duration, abbreviated rsd, is a triplet A =

(S,A, d), where (S,A) is a rs, and d : S → Z+.

We refer to (S,A) as the underlying rs of A , denoted by und(A), and to d as

the duration function of A . For x ∈ S, d(x) is the duration of x (in A). Intuitively,

once an element x is produced, its lifetime is d(x) consecutive states.

The notion of interactive process is extended now to incorporate duration ac-

cording to the above intuition. A graphical illustration of an interactive process is

provided in Figure 3.

Definition 15. Let A = (S,A, d) be a rsd. An interactive process in A is a triplet

π = (γ, δ, ρ) of finite sequences such that, for some n > 1, γ = C0, C1, · · · , Cn,

δ = D0, · · · , Dn, ρ = G0, · · · , Gn where for all i ∈ {0, · · · , n}, Ci, Di, Gi ⊆ S,

Gi = {x ∈ S | d(x) ≥ 2 and x ∈ Dj , for some j ∈ {i− (d(x) − 1), · · · , i− 1}},

D0 = ∅, and Di = resA (Di−1 ∪ Ci−1 ∪Gi−1) for i > 0.
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As before, our intuition is that the Ci are the new context entities entering the

system, and the Di are the immediate results of the system’s reactions. However

the Gi are entities that persist after being produced in a previous state. For a given

interactive process π in a rsd A , the sequence τ = W0,W1, · · · ,Wn defined by

Wi = Ci ∪Di ∪Gi for all i ∈ {0, · · · , n} is the state sequence of π. The notions and

notations of context-independent state sequence, STS(A), and CISTS(A) for A
carry over from reaction systems through the above notion of an interactive process.

Note that if d(x) = 1 for each x ∈ S, then one gets “ordinary” reaction systems.

In this case, the rsd A = (S,A, d) is “essentially” the rs (S,A) = und(A), meaning

that the result and state sequences are not influenced by the duration sequence

G0 = ∅, G1 = ∅, · · · , Gn = ∅. Thus, D0 = ∅ and for all i ∈ {1, · · · , n}, Di =

resA (Di−1 ∪ Ci−1) and Wi = Ci ∪Di.

Example 16. Consider again the reaction system U = (S,U) with S = {1, 2, 3, 4}

from Example 7. We have seen that τ = {1, 2, 4}, {1, 2, 3},∅ is a context-

independent state sequence in U. Hence τ “dies” in the third state.

Define now d : S → Z+ by d(1) = 2, d(2) = d(3) = 1 and d(4) = 3, and

consider the rsd Ud = (S,U, d). Let us begin again with W0 = {1, 2, 4}. We get

then the following context-independent state sequence τ ′ of Ud: W0 = {1, 2, 4},

W1 = {1, 2, 3}, W2 = {1}, W3 = {2}, W4 = {1, 3}, W5 = {1, 2, 3}, W6 = ∅. Here,

e.g., in the notation of Definition 15 we have W2 = D2∪G2 = ∅∪{1}. Although we

begin in the same initial state, we get a different “dying sequence” in Ud (compared

to U).

It turns out that duration of entities in a rsd can be explained through in-

teractions with an environment. More precisely, given A = (S,A, d) one can em-

bed und(A) in a rs (without duration) A ′ = (S′, A′), where embedding means

S ⊆ S′ and A ⊆ A′ (and we write then und(A) v A ′), so that the set of context-

independent state sequences of A is obtained by projection onto S of context-

independent state sequences of the bigger system A ′. In this way, the phrase “em-

bedding a rs in an environment” becomes a formal term/construct, and indeed the

duration is the result of an interaction of a rs with its environment. This is formally

stated by the following result.

ONMLHIJK· · ·
C0

ONMLHIJK· · ·
C1

· · · ONMLHIJK· · ·
Cn−1

ONMLHIJK· · ·
Cn

ONMLHIJK· · ·
D0

ONMLHIJK· · ·
D1

· · · ONMLHIJK· · ·
Dn−1

ONMLHIJK· · ·
Dn

ONMLHIJK· · ·
G0

ONMLHIJK· · ·
G1

· · · ONMLHIJK· · ·
Gn−1

ONMLHIJK· · ·
Gn

- - - - - - -

- - - - - - -

- -
- -

- -
-

- -
- -

- -
-

- - - - - -

-
-

-

-
-

-

Fig. 3. Interactive process for a reaction system with duration.
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Theorem 17 ([1]) For every rsd system A there exists a rs A ′ such that

und(A) v A ′, and projS(CISTS(A ′)) = CISTS(A).

Clearly, if A is a reaction system (without duration)

and W0, · · · ,Wi,Wi+1, · · · ,Wj ,Wj+1, · · · ,Wm is a context-independent state se-

quence of A such that Wi = Wj , then also Wi+1 = Wj+1. This follows from the

fact that such a state sequence results from iterating the function resA . However,

this is not the case in reaction systems with duration, as was illustrated in Exam-

ple 16, where W1 = W5 but W2 6= W6. In particular, in reaction systems one may

have a state sequence W0, · · · ,Wi,Wi+1,Wi+2, · · · ,Wm such that Wi = Wi+1 but

Wi+1 6= Wi+2 as illustrated in the following example.

Example 18. Consider the rsd V = ({1, 2}, A, d) with A = {({2}, {1}, {1, 2})}

and d(1) = 3 and d(2) = 2. We have that τ = W0,W1,W2,W3 =

{2}, {1, 2}, {1, 2}, {1} is a context-independent state sequence of V . Notice that

there are two consecutive states (W1,W2) which are equal while the next state (W3)

is again different.

Such “locally constant” behavior of context-independent state sequences is for-

mally defined as follows.

Definition 19. Let A be a rsd, and let τ = W0,W1, · · · ,Wn ∈ STS(A). For

i ∈ {1, · · · , n}, Wi is locally constant if Wi = Wi−1.

Locally constant behavior leads to blocks/segments consisting of the same state.

We will discuss some of their properties now.

We first need some formal notions and notation. Let τ = W0,W1, · · · ,Wn be a

sequence of sets. A segment τ ′ of τ is a consecutive subsequence Wi,Wi+1, · · · ,Wj

of τ for some i, j ∈ {0, · · · , n} with i ≤ j. We say that τ ′ is nonterminal in τ if

j < n. Also, τ ′ is constant if Wi = Wi+1 = · · · = Wj , and it is maximally constant

in τ if it is constant and it cannot be extended to a longer constant segment of τ

(i.e., either i = 0 or Wi−1 6= Wi, and either j = n or Wj 6= Wj+1).

It turns out that long-enough context-independent state sequences must contain

locally constant segments.

Theorem 20 ([1]) Let A = (S,A, d) be a rsd, and let t0 = min{d(x) | x ∈ S}.

Let τ = W0,W1, · · · ,Wn ∈ CISTS(A), and let ρ = Wi,Wi+1, · · · ,Wi+t0−1 be a

segment of τ such that i ≥ 1. If t0 > 2|S|, then there exists a state in ρ which is

locally constant.

Using Theorem 20 one can derive a lower bound on the average length of max-

imal constant segments.

Corollary 21. Let A = (S,A, d) be a rsd, and let t0 = min{d(x) | x ∈ S}. If t0 ≥

2|S|, then the average length of maximal constant segments in context-independent

state sequences of A longer than t0 is at least t0−2|S|
2|S|+1 .
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Finally, we have the following upper bound on maximal constant segments.

Theorem 22 ([1]) Let A = (S,A, d) be a rsd, and let t1 = max{d(x) | x ∈ S}.

For every τ ∈ CISTS(A), if σ is a nonterminal maximal constant segment of τ ,

then |σ| ≤ t1.

7. Causalities in Reaction Systems

Let us recall that a reaction system is a formal model of interactions between

biochemical reactions where the underlying mechanisms of these interactions are

facilitation and inhibition. Hence the understanding of causalities in reaction sys-

tems (i.e., the ways that the entities influence each other) is important for the

understanding of the functioning of reaction systems. Some of these causalities are

“directly visible” from the specification of a rs, e.g., for entities x and y there is a

production b such that y ∈ Mb and x ∈ Pb—then the production of x via b is de-

pendent on the presence or absence of y (and, perhaps, on other entities). This type

of causality is informally referred to as a static causality. Another type of causality,

informally referred to as dynamic, is defined as a property of the set of all state

sequences of a given rs. In this section we will consider both kinds of causalities.

Recall that for a reaction a, we define the resources of a as Ma = Ra ∪ Ia.

Given a reaction a, we will refer to “forward causalities” (from the resources Ma to

the products Pa) as influence, and to the “backward/inverse causalities” (from the

product Pa to the resources Ma) as dependence. Formally, both static causalities,

the influence and the dependence, are defined as follows.

Definition 23. Let A = (S,A) be a rs, and let x ∈ S. The resource dependence

set of x (denoted by MDx), and the product influence set of x (denoted by PIx) are

defined by:

MDx =
⋃

a∈A,x∈Pa

Ma and PIx =
⋃

a∈A,x∈Ma

Pa .

Now that the resource dependence and product influence are defined for entities,

we can formally define reaction systems where these kinds of causalities are bounded.

Definition 24. Let A = (S,A) be a rs and let q ∈ Z+.

• A is a rs with q-bounded resource dependence, abbreviated by q-MD rs, if

|MDx| ≤ q for each x ∈ S.

• A is a rs with q-bounded product influence, abbreviated by q-PI rs, if |PIx| ≤ q

for each x ∈ S.

• The average resource dependence of A , denoted by avMD(A), is defined as
∑

x∈S
|MDx|
|S| .

• The average product influence of A , denoted by avPI(A), is defined as
∑

x∈S
|PIx|
|S| .
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1 2

3 4

Fig. 4. The influence graph from Example 27.

Example 25. Let A = (S,A) with S = {1, 2, 3, 4} and A = {({1}, {4}, {2}),

({2}, {1}, {1}), ({3}, {1, 4}, {3}), ({1}, {3}, {4})}. We have MD1 = {1, 2}, PI1 =

{1, 2, 3, 4}, MD2 = {1, 4}, PI2 = {1}, MD3 = {1, 3, 4}, PI3 = {3, 4}, MD4 = {1, 3},

and PI4 = {2, 3}. Thus A is a 3-MD and a 4-PI rs. Moreover, avMD(A) =

avPI(A) = 9/4.

The static causalities in a rs A are directly depicted in the influence graph of

A which is formally defined as follows.

Definition 26. Let A = (S,A) be a rs. The influence graph of A , denoted by

infA , is the digraph (S,E), where for x, y ∈ S, (x, y) ∈ E if and only if x ∈ Ma and

y ∈ Pa for some a ∈ A.

Example 27. Consider again the reaction system A from Example 25. The influ-

ence graph of A is depicted in Figure 4.

Influence graphs are useful in analysis of causalities in reaction systems. For

example, they yield a simple proof of the following property.

Theorem 28 ([2]) For every rs A , avMD(A) = avPI(A).

We move now to consider dynamic causalities (ω denotes the smallest infinite

ordinal, which is bigger than any natural number). The key notion here is the

notion of the causal distance from entity x to entity y which formalizes the “minimal

influence distance of x on y” within all possible context-independent state sequences.

The intuition behind this notion is as follows. If we consider a pair τ = W0, · · · ,Wm

and τ ′ = W ′
0,W

′
1, · · · ,W

′
m of two context-independent state sequences such that

W0 ⊕ W ′
0 = {x} and we compare pairwise consecutive states of τ and τ ′, then if,

for some j ∈ {1, · · · ,m}, y ∈ Wj ⊕W ′
j then this appearance of y in one of Wj ,W

′
j

is caused by x. If such a j does not exist, then x does not influence y within the

pair τ ,τ ′, and we set the causal distance equal to ω. If, on the other hand, n is

the minimal such j, then n is the causal distance from x to y within this pair τ ,τ ′.

Now consider the causal distance from x to y in the family of all pairs of context-

independent state sequences where the symmetric difference of initial states equals

x, then we get the causal distance from x to y (in the given rs A).
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The notion of causal distance formalizes the minimal “influence distance” be-

tween two entities x and y within all possible context-independent state sequences.

Definition 29. Let A = (S,A) be a rs, and x, y ∈ S.

• Let τ, τ ′ ∈ CISTS(A) where τ = W0,W1, · · · ,Wm, τ ′ = W ′
0,W

′
1, · · · ,W

′
m, and

W0 ⊕W ′
0 = {x}. Let moreover Zx,y(τ, τ

′) = {n ∈ {0, · · · ,m} | y ∈ Wn ⊕W ′
n}.

Then the causal distance from x to y in τ , τ ′ is defined by:

δx,y(τ, τ
′) =

{

minZx,y(τ, τ
′) if Zx,y(τ, τ

′) 6= ∅

ω otherwise
.

• The causal distance from x to y is defined by:

cdx,y = min{δx,y(τ, τ
′) | τ, τ ′ ∈ CISTS(A), |τ | = |τ ′|, and init(τ)⊕init(τ ′) = {x}}.

Example 30. For the reaction system A from Example 25, τ1 = {2}, {1}, {2, 4}

and τ2 = {1, 2}, {2, 4}, {1} are two context-independent state sequences of A . Note

that W0 ⊕ W ′
0 = {1}. We have δ1,1(τ, τ

′) = 0, δ1,2(τ, τ
′) = δ1,4(τ, τ

′) = 1, and

δ1,3(τ, τ
′) = ω.

It turns out that, for a q-PI reaction systems A , the number of entities with

causal distance d from any entity x is at most qd.

Theorem 31 ([2]) Let A = (S,A) be a rs and let x ∈ S. If A is a q-PI rs for

q ≥ 1, then for every d ∈ Z+, |{y ∈ S | cdx,y = d}| ≤ qd.

8. Discussion

In this paper, we have introduced reaction systems along with their underlying

intuition and motivation. The two primary examples—a binary counter and finite

transition systems—are familiar to our intended audience of theoretical computer

scientists. Finally, we gave a guided tour of results from three theoretical research

areas within reaction systems.

Because of the restriction on the size of this paper, the tour was short. In order

to give a more complete picture of (research in) reaction systems we will briefly

discuss now some other research themes from the literature.

Although the research on reaction systems began with the investigation of a

specific formal model, by today we have a whole framework for an abstract study

of biochemical reactions based on reaction systems. Within this framework the

basic notion of a reaction system can be modified whenever needed in studies of

various research themes concerning biochemical reactions. Reaction systems with

duration from Section 6 are an example of such a modification—a reaction system

was equipped with a duration function.

There is no counting in reaction systems, however there are many situations

in biochemical systems where one needs to assign quantitative parameters to the

states of a system. Our assumption is that a numerical value can be assigned to a
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state T if there is a measurement of T yielding this value. To formalize this, one

defines measurement functions which assign reals to states. Measurement functions

are required to be additive, i.e., for a measurement function f and disjoint sets

W1,W2 we have f(W1 ∪ W2) = f(W1) + f(W2). Consequently, a reaction system

with measurements [5] is a reaction system equipped with a finite set of measurement

functions, hence a triplet A = (S,A, F ), where (S,A) is a rs and F is a finite set of

measurement functions on (the subsets of) S.

An important case when one needs measurement functions is assigning time

moments to states. This leads to fundamental questions such as “What is time in

(models of) biochemical systems?” and “How can one capture the notion of time in

the framework of reaction systems?”. The problem of introducing time in reaction

systems is investigated in [5]. Here a time function is a measurement function which

has nonnegative values (no entity can set time back) and is such that if W,U are two

consecutive elements of a state sequence, with U following W , then f(W ) < f(U)

(time flows forward). Hence time is physical/material—it is embedded in (carried

by) the entities of a system. It is shown in [5] how defining time in this way allows

one to investigate notions such as reaction times, the time distances between states

in a state sequence, and all kinds of rates.

Another important issue is the formation of structures in biochemical systems

(biological organisms), see, e.g., [11]. This issue is investigated in [4], where it is

demonstrated that dynamic runs of reaction systems (interactive processes) lead

to the formation of “compounds” (modules), and that the family of all modules

in a given state of a reaction system forms a lattice. Hence (as biochemists and

biologists know well) the development of a biochemical system (an organism) leads

to the formation of structures. It is also shown in [4] that reaction systems can be

considered as self-organizing systems.
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