Learning the Grammar of Dance

Joshua M. Stuart
Elizabeth Bradley
Department of Computer Science
University of Colorado
Boulder CO 80309-0430 USA

In Proceedings Fifteenth International Conference on Machine Learning,
Madison WI, 1998.
Abstract

A common task required of a dancer or athlete is to move from
one prescribed body posture to another in a manner that is con-
sistent with a specific style. One can automate this task, for the
purpose of computer animations, using simple machine-learning and
search techniques. In particular, we find kinesiologically and stylis-
tically consistent interpolation sequences between pairs of body pos-
tures using graph-theoretic methods to learn the “grammar” of joint
movements in a given corpus and then applying memory-bounded
A* search to the resulting transition graphs — using an influence
diagram that captures the topology of the human body in order to
reduce the search space.

1 INTRODUCTION

A common task required of a dancer or athlete is to move from one pre-
scribed body posture to another in a manner that is consistent with a spe-
cific style. If these postures are “far apart,” as measured by some metric that
takes into account both the kinesiology of the body and the style of the move-
ment genre, this can be nontrivial. For the purposes of computer-generated
animation, there are a variety of ways to generate movement sequences that
accomplish this kind of task. One can, for instance, use mathematical inter-
polation techniques like splines to move individual body parts from one po-
sition to another, but these kinds of methods do not address the problem of
kinesiological illegality (e.g., that the knee only bends 180 degrees, or that
arms cannot pass through ribcages). Many animation packages, such as Life
Forms (http://fas.sfu.ca/lifeforms.html), use an augmented spline ap-
proach that relies on a table of kinematic constraints to avoid illegal movements,
but this type of approach is somewhat ad hoc. A more-general way is to use
the physics of the body: derive the associated differential equations — a torque
balance for each joint, say — and solve the equivalent boundary-value problem.
Approaches like this[10] are extremely interesting and highly promising, but
also very difficult; deducing the control equations that humans use to recover

their balance after a jump, for example, is a Ph.D. thesis-level problem[13].
Stylistically faithful interpolations would be even harder to implement; neither
splines nor F' = ma can easily capture or enforce, for instance, the require-
ment that classical ballet emphasizes position over motion®, and developing a
mathematics- or physics-based approach that does so would be all but impossi-
ble. In this paper, we propose an alternative solution to this problem: a class of
corpus-based interpolation schemes that generate a kinesiologically and stylis-
tically consistent movement sequence between two specified body positions by
learning and then enforcing the dynamics of a particular movement genre.

The primary motivation for the development of these methods was our work
on a mathematical technique[l, 2] that automatically creates variations on pre-
defined motion sequences — an idea that was inspired by a similar scheme[5, 6]
that uses a related procedure to generate musical variations. We use the math-
ematics of nonlinear dynamics to shuffle a predefined movement sequence by
“wrapping” a progression of special symbols representing the body positions in
a dance piece, martial arts form, or other motion sequence around a chaotic
attractor. This establishes a symbolic dynamics that links the movement pro-
gression and the attractor geometry, as shown in figure 1. By definition, tra-
jectories from different starting points? travel along the same attractor but in
a different order. This property lets us use the mapping depicted in figure 1(d)
to create a variation: we simply follow a new trajectory around the attrac-
tor and invert the symbolic mapping, “playing” the body position for each cell
the trajectory enters. Variations generated in this manner, whether musical or
choreographic, are both aesthetically pleasing and strikingly reminiscent of the
original sequences. The stretching and folding of the chaotic dynamics guaran-
tee that the ordering of the pitches or movements in the variation is different
from the original sequence; at the same time, the fixed geometry of the attractor
ensures that a chaotic variation of Bach’s Prelude in C Major or of a short Bal-
anchine ballet sequence are related to the original piece in a sense reminiscent
of the classic “variation on a theme.” Broadly speaking, the chaotic variations
resemble the originals with some shuffling of coherent subsequences. This is
the primary source of the stylistic originality of the chaotic variation scheme —
in fact, this type of subsequence shuffling is a well-established creative mecha-
nism in modern choreography. One problem with any choreographic technique,
automated or not, that involves subsequence reordering, however, is that the
transitions at the subsequence boundaries can be quite jarring. Figure 2, for
example, shows a short section of a chaotically generated variation on a short
ballet adagio. Note the abrupt transition between the fifth and sixth moves of
the variation.

The interpolation algorithms that are the topic of this paper can smooth
these kinds of transitions in a manner that is both kinesiologically and stylisti-
cally consistent. These graph-theoretic methods “learn” the grammar of joint

!n ballet, body parts tend to describe piecewise-linear paths through space, emphasizing
the positions at the junctions of those linear segments; in modern dance, on the other hand,
the motion between the endpoints is the important feature.

2within the basin of attraction, of course

(d)

Figure 1: A chaotic mapping that links a short ballet adagio and the chaotic
Rdssler attractor. A Voronoi diagram is used to divide the region covered by the
trajectory shown in part (a) into cells, yielding the tiling shown in part (b). The
order in which the original trajectory traverses those cells defines the temporal
order of the cell itinerary that corresponds to that trajectory. Successive body
positions from the predefined movement sequence (c) are mapped to successive
cells in that itinerary, linking the structure of the movement sequence and the
attractor geometry. A small section of the overall mapping is shown in part (d).

i

§ § ANNAS
SRy, SO0, P
& g % 4 B P 3
N R
¥ =P

,v‘[}z%)

i, =

W :
e {
by,]/‘f t/j

P i

Figure 2: Part of a variation on a short ballet sequence, generated using the
chaotic shuffling procedure diagrammed in the previous figure. Note the abrupt
transition between the fifth and sixth frames. The interpolation schemes de-
scribed in this paper can be used to smooth such transitions in a kinesiologically
and stylistically consistent fashion.

movements in a given corpus and then apply memory-bounded A* search —
using an influence diagram that models the relationships of the joints in the
human body in order to reduce the otherwise-intractable search space — to find
an appropriate interpolation sequence between two given body positions. The
search is complicated by the fact that joint positions cannot be interpolated in
isolation: the movement patterns of the ankle, for instance, are strongly influ-
enced by whether or not the foot is on the ground — information that is implicit
in the positions of the pelvis, knees, etc. This requires that the expansion of
nodes in the search be context dependent in a somewhat unusual way. The
resulting interpolation procedures, which were developed and evaluated in close
collaboration with several expert dancers, are quite effective at capturing and
enforcing the dynamics of a given group of movement sequences.

2 CORPUS-BASED INTERPOLATION ALGO
RITHMS FOR MOVEMENT SEQUENCES

The interpolation schemes described in this section use corpora of human move-
ment — a corpus composed of ten Balanchine ballets, for instance, if one is
working with dances of that particular genre® — to select a movement sequence
that would naturally occur between a given pair of body postures. The basic
algorithms involved are fairly straightforward, but the application requires some
unusual tactics and variations. We first examine the corpus, capturing typical
progressions of joint positions in a set of transition graphs. Then, given a pair
of body postures, we use a variant of the A* algorithm to search these graphs
for interpolation subsequences. A typical interpolation sequence might, for in-

3The composition of the corpus will, of course, affect the nature of the interpolation;
smoothing abrupt transitions in ballet pieces using an interpolation scheme that is mathemat-
ically rooted in a karate corpus will negate the very aesthetic resemblance that this approach
strives to preserve. On the other hand, this might be an interesting source of innovation,
whereby one could mathematically mix two or more styles.

stance, first move the shoulder from its position in the fifth frame of figure 2
to its position in the sixth frame according to the rules for shoulder movement
that are implicit in the corpus, then repeat for the elbow, and so on.

Our original approach[l] was much more coarse-grained; the atomic repre-
sentational unit was a full body position and the patterns in the corpus were
represented in a single graph that had one vertex for each observed posture.
This approach was both impractical and unsatisfying. Firstly, it did not scale
well with corpus size because the number of unique body positions is so large.
Secondly, it could only populate interpolation sequences with verbatim copies
of full-body positions that appeared in the corpus. The methods described in
this paper, on the other hand, construct the body positions in the interpolation
sequence in a joint-wise manner and on the fly. This scheme not only avoids
the storage problems of the previous approach, but also allows innovation: it
can generate sequences that contain body positions that do not appear in the
corpus.

2.1 BODY POSTURE REPRESENTATION

We represent a human body posture by specifying the position of each of the
23 main joints with a quaternion, a standard representation in rigid-body me-
chanics that dates back to Hamilton[9]. A quaternion ¢ = (r, @) consists of an
axis of rotation & and a scalar r that specifies the angle of rotation of the joint
about 4. Thus, a body-position symbol is quite complicated: 23 descriptors
(pelvis, right-wrist, etc.), 92 numbers (four for each joint), and a variety
of information about the position and orientation of the center of mass.

Joint orientations are, in reality, continuous variables, but computational
complexity requires that they be discretized in our algorithms. Specifically,
each joint A can take on a finite number M?* of allowed orientations*. For-
mally, we define Q* as the set of allowed orientations for joint A and then
replace the actual orientation of the joint with the closest quaternion in Q™.
We can express a body position b as a discretized vector § by setting each
of its components sy equal to the quaternion in Q* that is closest to by:
sy = r such that ||by —r|| < ||bx —¢|| for all ¢,r € Q* where ||z — y|| is the
Euclidean distance® between the quaternions and y. We can find r in log(M?)
time using K-D trees[8] to represent the Q* sets. The procedure described in
this paragraph is analogous to “snapping” objects to a grid in computer drawing
applications.

Deriving a successful discretization of joint states was unexpectedly diffi-
cult. Simply discretizing the quaternion variable values — that is, classifying
all positions between, say, (right-wrist, 1, 1, 0, 1) and (right-wrist,
1, 1, 0.2, 1) as an equivalence class and representing them in the algorithms
as a single posture — produced visibly awkward animations. The human visual
perception system appears to be very sensitive to small variations in quaternion

4In practice, M* < 400.
50ne of the main advantages of quaternions is that they can be treated as 4-vectors in the
standard norm and transformation operations.

coefficients: any change in a single coefficient seems to violate the “motif” of

the motion. The same problem arose when we attempted a physically more-
realistic discretization by transforming quaternion data to Euler angles and then
discretizing 6, ¢, and 9 instead. The solution on which we eventually settled
uses a discretization library that was created by hand by an expert dancer.

2.2 REPRESENTATION OF A MOVEMENT CORPUS
2.2.1 Joint Transition Graphs

A transition graph is a weighted-directed graph that captures the transition
probabilities in a symbol sequence. In general, each vertex v in such a graph
represents a symbol and each weighted edge (v, u) reflects the probability that
the symbol associated with vertex u follows the symbol associated with vertex
v. For the purposes of analyzing a human movement corpus, we build one
transition graph for each joint, using the corpus to identify orientations that
the joint assumes and to estimate the corresponding transition probabilities.
Vertices in this kind of graph represent particular discretized joint orientations,
and edges correspond to the movement of the joint from one orientation to
another.

The transition graph construction procedure is fairly straightforward. We
first transform every body position in the corpus to a discretized position, as
desgribed in the previous section, so that a consecutive pair of body positions
(a@,b), each consisting of 23 continuous-valued quaternions, becomes the dis-
cretized pair (§,%) where §, each consist of 23 discretized quaternions. We
then build a transition graph G* for each joint A\; G* contains M?* vertices,
each of which corresponds to exactly one quaternion in Q*. For convenience,
we will refer to vertices in G* by the corresponding quaternions in Q*. We
record the fact that joint A is allowed to move from ay to by by introducing an
edge in G* from vertex sy to vertex ty. We assign a weight to this edge that
models the “unlikeliness” with which such a transition occurs in the corpus.
This measure of unlikeliness is related to P(q — r), the probability that joint A
moves from the quaternion ¢ € Q* to the quaternion r € Q*, per the following
expression for the weight of edge (g,r) € G

wy, = —log(P(q = 1)) = —log(P(r|g)

~ log(C(q)) — log(C(g,T))

where C(g) is the number of times joint A assumed an orientation approximated
by ¢ and C(g,r) is the number of times that the ordered pair (¢,r) occurred.
Larger weights correspond to transitions that are less likely to occur®.

Figure 3 shows a transition graph for the hips that was constructed in this
fashion from a corpus of 38 short ballet sequences totaling 1720 positions. In

the interests of clarity, edge weights and isolated vertices have been omitted

6Given this formulation, saying that two vertices are disconnected is synonymous with
saying that two are connected by an edge with infinite weight.

U

I

/{-'? 2 I"\ /(’Q.\‘
& '@»“*”

< 5O0-0-0-0-0-0-0-5-0-0-Q

RORPRCRORORY

Figure 3: A transition graph that represents the movement patterns of the
hips in a small corpus of 38 short ballet sequences. The numbers in each state
identify the discretized position of the joint. Edge weights and isolated vertices
have been omitted in the interests of clarity.

7

from this figure. The intricate patterns in these dance progressions are reflected
by the complex topology of the graph.

2.2.2 Coordinating Joint Movements

A joint transition graph represents the behavior of a joint in isolation. This
information, alone, cannot capture the physical constraints that govern the co-
ordination of the joints in the body. For example, if the shoulder is in its resting
position with the palm facing the thigh, the elbow can bend nearly 180 degrees,
but if the shoulder is turned 90 degrees on its long axis (until the palm faces
backwards), the elbow can only bend about five degrees before the hand collides
with the leg. In order to construct sensible interpolation sequences, we need a
simple and efficient model of this type of joint coordination.

The most complete and general approach to this problem would be to model
the interactions between each joint and every other joint in the body, but doing
so engenders a combinatorial explosion in the search space. There are sensible
ways to reduce the complexity of the problem, however; to a first approximation,
a joint is not influenced by every other joint in the body. The position of the
wrist, for instance, strongly affects the position of the fingers but has little
effect on the toes. We put this simplifying assumption into effect by using
an influence diagram[11] that reflects the structure and physics of the human
body to explicitly represent the relationships of the joints to one another. As
shown in figure 4(b), the nodes (joints) in the tree only affect the position of
their immediate children. The pelvis is the root of this tree; three branches

(b)

Figure 4: An influence diagram that explicitly represents the coordination of
joints of the human body. Part (a) depicts the body and part (b) shows the inter-
joint dependencies induced by gravity and topology: for instance, the position
of the pelvis influences the positions of both hips A, and h; and the lumbar
spine [, but the right and left ankles k. and k; do not directly influence one
another. Without this simplifying assumption, the search space for this problem
is intractable.

lead from this root to nodes corresponding to the right hip, the left hip, and
the lower spine’. Each hip joint is the parent node to a knee, and so on. We
assign a conditional probability distribution, estimated from the corpus, to every
(parent,child) pair in the tree. For every combination of states that a parent
A and its child g can assume, the distributions estimate the probability that
joint p is in orientation r given that joint A is in orientation g, for every pair of
discretized of quaternions ¢ € Q*,r € Q".

2.3 A JOINT-WISE INTERPOLATION ALGORITHM

Given a pair of discretized body postures (5,%) and a set of 23 transition graphs
(one for each joint), we can use a memory-bounded A* search strategy[12] to
find an interpolation subsequence that moves smoothly between § and t. In
general, A* finds a path from an initial state to a goal state by progressively
generating successors of the current state in the search. The algorithm places
successor states on a priority queue, sorted according to a score that estimates
the cost of finding a goal state. In the next iteration, the state with the best
score is drawn from the priority queue, its successor states are computed and
added to the queue, and the procedure is repeated until a goal state is found or
until the queue is empty.

In this application, the states in the A* search space are body states — 23-
vectors of discretized quaternions that represent full body positions. To generate
successors of a body state §, we first use the transition graphs to find successors
for each joint state sy independently, and then take all combinations (cross
product) across the joints to obtain the list of body-state successors. From this
list, we can filter out the disallowed body positions using the influence diagram
and the probability distribution of parent-child pairs. The successors of the
joint-state sy are those vertices in G* that are connected to sy by an edge
directed away from sy.

The score assigned to a body state @ has two parts:

1. the cost of the path from the initial state § to @
2. an estimate of the distance between @ and the goal state i

The cost of the path starting at § and ending at @ is simply the sum of the costs
of the transitions taken in the path. Furthermore, since each body movement
is composed of a group of joint movements, we can compute the cost of one
body-state transition by summing the weights over the edges traversed by the
joints. To make this concrete, suppose we are trying to find an interpolating
path between the body states § and . At some point in the search, we reach
the body-state 4 and must assign the path from § to @ a score. If we write the

path from §to @ as § — @ = (&' = §,42,---,7* 1, ¥ = i), we can express the

"The sacrum and the five lumbar vertebrae are lumped together. This compromise sacrifices
back suppleness for lowered complexity.

cost of such a path as

z—1

g(§_> 'LT) = Z Zw;\iwiﬂ

=1 A

The heuristic part of the score, h(#@), estimates how far @ is from the goal state
t. h(@) is calculated by summing the weights of the shortest paths from uy to
tx, ux,tx € G* over all the joints. We obtain these shortest path weights using
Dijkstra’s single-source shortest path algorithm([7], implemented as described
in [4]. The final score assigned to body-state @ is then f(§ — @) = g(§ —
@) + h(@).

At the time of this writing, we have only done extensive testing on a greedy
search strategy that ignores the cost of paths and scores nodes in the search
based solely on the estimated distance between them and the goal (i.e., f(5—
@) = h(@)). In the following section, we describe the implications of this strategy
and suggest how different A* scoring functions are likely to affect the interpola-
tion sequences. We are also working on incorporating more information about
the position, velocity, and acceleration of the center of mass, so the momentum
of the body is conserved as it passes through the interpolated sections of the
movement; accomplishing this will require wide-ranging adaptations to the basic
A* algorithm and perhaps even a wholly different approach. Finally, we are also
in the process of testing how different influence diagram topologies affect the
interpolation algorithm’s ability to select good postures during the search. (For
example, to model and enforce the symmetry of the body, we could combine
left and right counterparts into one node.)

3 RESULTS AND EVALUATION

The “goal” of choreography is aesthetic appeal, so it is difficult to analyze the
results of this work using standard scientific methods®. However, there are
some standard rules, procedures, and patterns in certain dance and martial arts
genres that can be used to evaluate the interpolation sequences generated by
the corpus-based techniques described in the previous sections. The evaluation
described in this section is a highly condensed transcript of a dozen one- to
two-hour sessions, wherein expert dancers — primarily Professor David Capps
of the Department of Theater and Dance at the University of Colorado, an
accomplished dancer and choreographer whose works have appeared on stages
around the world, and Nadia Rojasadame, a student in that department and the
composer of the adagio used to generate the variations shown in figures 1 and 2
— went through the results frame by frame, answering and then discussing the
following questions:

e Does this posture transition look reasonable?

8The very notion of objective, quantifyable evaluation elicited much consternation and
mirth — along with some offense — from our expert dance consultants.

10

i

Figure 5: An interpolation sequence computed by the corpus-based techniques
described in the previous section. The starting and ending positions passed as
input to the interpolation procedure are shown at the top left and top right,
respectively; the eight frames below them were computed by the interpolator.

e If so, why and how?

e If not, why and how? What would you do instead? How many poses
would you assume in doing so?

In order to make this process less subjective, we are developing a formal evalua-
tion protocol, consisting of several subsequences and a series of scored questions
about the flow of the movement therein, to be administered to groups of Uni-
versity of Colorado dance students.

Figure 5 shows a movement sequence that the learning and search algorithms
described in the previous sections produced when given the task of interpolating
between the fifth and sixth frames of the ballet sequence in figure 2. The
search strategy was a simple greedy approach — an A* score f(5— @) = h(@)
that only factored in the distance to the goal — and the corpus included 38
short ballets. The starting and ending body postures (top left and top right in
figure 5, labeled and , respectively) are quite different; note the facing
of the dancer and the weight distribution on the feet, for example. The eight-
move interpolation sequence computed by the interpolator moves between those
positions in a very natural way. Its first move, for instance, is to lower the left
leg, a natural strategy if one is going to change one’s facing and end up on
two feet. The following move is a simple weight shift (frames and), in
preparation for a lift of the right leg. This lift, which is not strictly necessary
to move from the fifth frame to the tenth, is an innovation that the program
inserted because of the observed patterns in the corpus; it reflects the fact that
ballet dancers rarely spin with both feet flat on the ground. Perhaps the most
interesting thing about this interpolation sequence, from a balletic standpoint,

11

is the relévé® that the interpolation procedure inserted between frames @ and

. Many relévés appear in the corpus, but none of them are associated with
upper body positions that resemble the one that appears in this sequence. Our
algorithm has invented a physically and stylistically appropriate way to move the
dancer between the specified positions. The interpolation sequence in figure 5
includes a variety of other stylistically consistent innovations as well; consider,
for example, the uplifted chest and chin in frames| 7 |and @ — posture elements
that are quintessential ballet style. Recall that these postures were not simply
pasted in verbatim from the corpus; they were synthesized joint by joint using
the transition graphs and influence-diagram directed A* search, and their fit
to the genre is strong evidence of the success of the methods described in the
previous section.

The original ballet sequence from which the snapshot in figure 1 was drawn
contained 68 frames, and the chaotic shuffling scheme introduced 23 abrupt
transitions into the variation (e.g., frames 5 — 6 of figure 2). In eleven of those
23 cases — including the one depicted in figure 5 — our interpolation scheme
was successful in interpolating smoothly between the two moves that framed
the gap. The interpolation subsequences so constructed, which ranged in length
from two to 60 frames, included a variety of stylistically consistent and often
innovative sequences; among other things, the interpolation algorithms used
relévés, pliés and fifth-position rests in highly appropriate ways — and all with
no hard coding. From a subjective artistic standpoint, the results have some
room for improvement; there are still five somewhat-awkward transitions in
the 185 total frames of the 11 interpolation sequences. A less-subjective way to
evaluate the success of this scheme is to compare the length of these interpolation
sequences to the distance between the corresponding postures in the original
piece, which is presumably a good metric for how long it would take a human
to move from one to the other. For the most part, the interpolated sequences
were shorter than or the same length'® as the number of frames separating the
corresponding positions in the original piece, which indicates that the search
strategies are working well. mpeg movies of this adagio sequence and its chaotic
variation — both with and without interpolation— are available on the web!!.

This example brings out two significant failure modes of this approach. The
algorithms cannot find interpolation subsequences between body positions that
occur in reversed temporal order — e.g., places where the chaotic shuffler has
forced a jump backwards in time, inserting a move into the variation that ap-
peared earlier in the original piece. Secondly, the algorithms sometimes in-
troduce relatively long paths between positions that appear very similar; in
one such instance, where the task was a simple 90-degree rotation of the right
shoulder around the long axis of the arm, the algorithm constructed an 65-move
sequence that involved much leg and trunk movement. Both of these problems

9A relévé, which consists of lifting up on one’s toes, is a stylistically required component
of a direction shift in ballet.

10Five were shorter (77% average), four were the same length, and two were somewhat
(150% and 110%) longer.

Myww.cs.colorado.edu/~1izb/chaotic-dance.html

12

are the result of limited corpus size and corresponding patterns in the joint
transition graphs. These graphs are far from being connected, so some joint
orientations are not reachable from others. Even when they are connected, the
search may have to wander all over the graph to find a path between two given
vertices. In a large, rich corpus, the graphs would be highly connected, giv-
ing the search algorithms more leeway. In the existing corpora, however, the
paucity of edges constrains them to very narrow (and long) search paths that
can translate to stilted, idiosyncratic movement sequences. This is an unavoid-
able problem in this application, unfortunately; the dance world has not yet
embraced the notion of computer animation, so the availability of animated
dances is quite limited.

Long, linear vertex chains like the ones at the top left of figure 3 are in-
troduced into the joint transition graph when one animation in the corpus
progresses through orientations that do not occur in other animations. The
directionality in these chains makes it impossible for the search to move “up-
stream,” which is the cause of the first failure mode described in the previous
paragraph. We could fix this problem, artificially, by introducing reverse edges
into the graphs in some kinesiologically and stylistically justifiable way. For
every transition § — { seen in the corpus, for example, we could introduce an
edge from ty to &) for every joint A. The implicit assumption here is that it
is always possible to reverse the motion of a joint'?. Thus, at the expense of
destroying some of the accuracy with which the original approach modeled the
temporal asymmetry of the genre, we could force the graphs to be connected.
We are currently investigating what probabilities to use on these reverse edges.
Artificially introduced reverse transitions would not solve the second problem;
chains — even bidirectional chains — tend to lengthen interpolated sequences.
One solution to this problem is to add more examples to the corpus to enrich its
connectivity. If more examples are hard to come by, another (artificial) solution
is to perform a coarser discretization to minimize the number of possible states
a joint can assume. We are currently experimenting with different discretization
resolutions to simultaneously minimize the number of nodes and maximize the
statistical information content of the transition graphs.

The greedy A* search strategy is reflected by “inefficiencies” in the interpo-
lation sequences — places where the dancer appears to be headed towards the
goal state, but then moves away. For example, one of the interpolation goals in
figure 5 is to change the facing almost 180 degrees, from left to right. By the
fourth frame, the dancer has turned to the right, but in the fifth frame s/he
has turned back to the left again, which is part of what necessitates the relévé
sequence between frames @ and . We are in the process of testing different
search strategies and analyzing the results; instead of choosing the state that is
closest to the goal, for instance, we are incorporating the path weights up to the
current point in the solution as part of the scoring function. This should allow
the search algorithm to find shorter, more-direct sequences. Finally, note that

12This makes sense for classical ballet, but not modern dance; motion in the former tends
to be “circular” in space, whereas in the latter, one often moves a limb out and back along
the same path.

13

some search strategies — e.g., always taking the highest-probability branch —
can be a significant source of cliché.

In order to explore the effects of joint coordination, we removed the influ-
ence diagram and ran simple, uncoordinated A* search to find paths between
positions. The resulting sequences were extremely interesting. To the layman’s
eye, they look jerky and unappealing, so we expected negative comments about
them from the experts. However, it seems that an uncoordinated path through a
classical ballet corpus is a very good way to generate modern dance sequences,
and the results were inventive and appealing: “Wow! I'm going to use that
move in my next piece!” In retrospect, this makes some sense: the modern
dance genre actively works at violating the ballet motif.

The interpolation procedure is fairly rapid. Applying greedy search to the 23
abrupt-transition pairs in the 68-frame variation, for instance, required'? 280
seconds on an HP9000/735 workstation running HP-UX v10.20 for a corpus
containing 1720 ballet postures. A more-complex scoring function will obvi-
ously require longer run time. Preliminary runs of non-greedy A*, for example,
required 500 seconds to perform the same task and yielded similar results, in
terms of quality, sequence length, etc. The complexity also increases with corpus
size; the same (non-greedy A*) task on an augmented corpus of 5000 postures
— the 1720 original frames plus 3280 non-ballet sequences — required 3620
seconds. The chaotic shuffling procedure is also fast: for a 1000-position move-
ment sequence, the chaotic shuffling procedure required 18 seconds on the same
workstation, while a 9000-move sequence required 156 seconds.

4 CONCLUSION

By applying techniques from graph theory, artificial intelligence, and statistics to
a corpus of movement sequences from a particular genre, the interpolation meth-
ods described in this paper automatically construct interpolation sequences that
move from one specified body posture to another in a physically and stylistically
coherent fashion. These tactics can be used to smooth abrupt transitions that
result from subsequence reordering, a common creative mechanism in modern
choreography that can be emulated mathematically by using chaotic dynamics
to generate variations.

Evaluating the results of this work is necessarily somewhat subjective. We
have shown animations of a variety of different chaotic variations to hundreds of
people, including dozens of dancers and martial artists, both with and without
smoothing of the abrupt transitions. We have also worked in depth with several
expert dancers in order to evaluate those interpolation sequences sensibly. The
consensus is that the chaotic variations with smoothed transitions not only
resemble the original pieces, but also are in some sense pleasing to the eye.
They are both different from the originals and faithful to the dynamics of the
genre; there are no jarring transitions or out-of-character moves. This is a non-
trivial accomplishment. A previous attempt to use mathematics to generate

13This will obviously depend on the positions involved.

14

choreographic variations — a subsequence randomization scheme introduced
by the now well-known choreographer Merce Cunningham in the 1960s — met
with a strongly negative reception in the dance world, primarily because of the
awkwardness at the transition points'.

Many of the techniques used here, as well as others on which we are currently
working, were inspired by solutions to similar problems that arise in computa-
tional linguistics (e.g., learning a grammar from a corpus and then using it
to construct meaningful sentences). For example, one can view the transition
graphs in section 2.2.1 and figure 3 as first-order Markov chains, where a single
chain represents the probabilistic behavior of each joint in the body.

The objective of this research project was to tailor generic strategies for a
specific high-dimensional search problem in an unusual and demanding domain.
The results could be extended to other domains where the genre of sequence is
important, such as speech recognition (e.g., filling in missing parts of a signal)
or text. Finally, the implementation of these algorithms allows for arbitrary
body topologies, so we are by no means limited to human motion sequences —
though one would, of course, have to adapt the quaternion-based symbol set and
the influence diagram to the topology of the limbs and joints that are involved.

Acknowledgements

The authors would like to thank D. Capps, N. Rojasadame, S. Schroeder, D.
Jurafsky, M. Seltzer, D. Dabby, A. Hogan, E. Schell, A. Rubin, and the ICML-
98 reviewers for helpful suggestions and comments. This work was supported by
NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship
in Science and Engineering from the David and Lucile Packard Foundation.

References

[1] E. Bradley and J. Stuart. Using chaos to generate choreographic variations.
In Proceedings of the Fourth Experimental Chaos Conference, pages 451—
456, 1997.

[2] E. Bradley and J. Stuart. Using chaos to generate variations on movement
sequences. Chaos, 8:800-807, 1998.

[3] D. Capps. University of Colorado, Department of Theater and Dance,
personal communication, 1998.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. The MIT Press, 1990. pp 527-531.

[5] D. Dabby. Musical variations from a chaotic mapping. Chaos, 6:95-107,

1996.
14gince that time, aleatory choreography — wherein randomization schemes are used to
shuffle sequences — “has by now become one of the important currencies of dance composition

approaches.”(3].

15

[6]

[7]

D. Dabby. A chaotic mapping for musical and image variation. In Proceed-
ings of the Fourth Experimental Chaos Conference, 1997.

E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269-271, 1959.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathe-
matical Software, 3:209-226, 1977.

H. Goldstein. Classical Mechanics. Addison Wesley, Reading MA, 1980.

J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating
human athletics. In Proceedings of SIGGRAPH, 1995.

R. M. Oliver and J. Q. Smith, editors. Influence Diagrams, Belief Nets and
Decision Analysis. Wiley, 1990.

P. Winston. Artificial Intelligence. Addison Wesley, Redwood City CA,
1992. Third Edition.

W. L. Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing.
PhD thesis, Georgia Institute of Technology, 1998.

16

