
Artificial Intelligence 133 (2001) 139–188

Reasoning about nonlinear system identification

Elizabeth Bradleya,∗,1, Matthew Easleyb,1, Reinhard Stollec,2
a Department of Computer Science, University of Colorado, Campus Box 430, Boulder, CO 80309-0430, USA

b Rockwell Science Center, 444 High Street, Suite 400, Palo Alto, CA 94301, USA
c Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Received 19 May 2000; received in revised form 4 May 2001

Abstract

System identification is the process of deducing a mathematical model of the internal dynamics of
a system from observations of its outputs. The computer program PRET automates this process by
building a layer of artificial intelligence (AI) techniques around a set of traditional formal engineering
methods. PRET takes a generate-and-test approach, using a small, powerfulmeta-domain theory that
tailors the space of candidate models to the problem at hand. It then tests these models against
the known behavior of the target system using a large set of more-general mathematical rules. The
complex interplay of heterogeneous reasoning modes that is involved in this process is orchestrated
by a special first-order logic system that uses static abstraction levels, dynamic declarative meta
control, and a simple form of truth maintenance in order to test models quickly and cheaply. Unlike
other modeling tools—most of which use libraries to model small, well-posed problems in limited
domains and rely on their users to supply detailed descriptions of the target system—PRET works
with nonlinear systems in multiple domains and interacts directly with the real world via sensors and
actuators. This approach has met with success in a variety of simulated and real applications, ranging
from textbook systems to real-world engineering problems. 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Automated model building; System identification; Qualitative reasoning; Qualitative physics;
Knowledge representation framework; Reasoning framework; Input-output modeling

* Corresponding author.
E-mail addresses: lizb@cs.colorado.edu (E. Bradley), me@rpal.rockwell.com (M. Easley),

rstolle@parc.xerox.com (R. Stolle).
1 Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science

and Engineering from the David and Lucile Packard Foundation.
2 Research performed while a research assistant at the University of Colorado at Boulder and during a

postdoctoral fellowship at Stanford University funded by the German Academic Exchange Service (DAAD)
“Gemeinsames Hochschulsonderprogramm III von Bund und Ländern”.

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)00143-6



140 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

1. Introduction

One of the most powerful analysis and design tools in existence—and often one of
the most difficult to create—is a good model. Modeling is an essential first step in a
variety of engineering problems. Faced with the task of designing a controller for a
robot arm, for instance, a mechanical engineer performs a few simple experiments on the
system, observes the resulting behavior, makes some informed guesses about what model
fragments could account for that behavior, and then combines those terms into a model
and checks it against the physical system. This model then becomes the mathematical core
of the controller. Accuracy is not the only requirement; for efficiency reasons, engineers
work hard to construct minimal models—those that ignore unimportant details and capture
only the behavior that is important for the task at hand. The subtlety of the reasoning skills
involved in this process, together with the intricacy of the interplay between them, has led
many of its practitioners to classify modeling as “intuitive” and “an art” [69].

The computer program PRET, the topic of this paper, formalizes these intuitions and
automates a coherent and useful part of this art. PRET is an automated tool for nonlinear
system identification. Its inputs are a set of observations of the outputs of a target system,
some optional hypotheses about the physics involved, and a set of tolerances within which
a successful model must match the observations; its output is an ordinary differential
equation (ODE) model of the internal dynamics of that system. See Fig. 1 for a block
diagram. PRET uses a small, powerful domain theory to build models and a larger, more-
general mathematical theory to test them. It is designed to work in any domain that admits
ODE models; adding a new domain is simply a matter of coding one or two simple domain
rules. Its architecture wraps a layer of artificial intelligence (AI) techniques around a set of
traditional formal engineering methods. This AI layer incorporates a variety of reasoning
modes: qualitative reasoning, qualitative simulation, numerical simulation, geometric
reasoning, constraint propagation, resolution, reasoning with abstraction levels, declarative
meta control, and a simple form of truth maintenance. Models are represented using
a component-based modeling framework that accommodates different domains, adapts
smoothly to varying amounts of domain knowledge, and allows expert users to create
model-building frameworks for new application domains easily. An input-output modeling
subsystem allows PRET to observe target systems actively, manipulating actuators and
reading sensors to perform experiments whose results augment its knowledge in a manner
that is useful to the modeling problem that it is trying to solve. The entire reasoning process

Fig. 1. PRET combines AI and formal engineering techniques to build ODE models of nonlinear dynamical
systems. It uses domain-specific knowledge to build models and an encoded ODE theory to test them, and it
interacts directly and autonomously with target systems using sensors and actuators.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 141

Fig. 2. The system identification (SID) process. Structural identification yields the general form of the model; in
parameter estimation, values for the unknown coefficients in that model are determined. PRET automates both
phases of this process.

is orchestrated by a special first-order logic inference system, which automatically chooses,
invokes, and interprets the results of the techniques that are appropriate for each point in
the model-building procedure. This combination of techniques lets PRET shift fluidly back
and forth between domain-specific reasoning, general mathematics, and actual physical
experiments in order to navigate efficiently through an exponential search space of possible
models.

In general, system identification proceeds in two interleaved phases: first,structural
identification, in which the form of the differential equation is determined, and then
parameter estimation, in which values for the coefficients are obtained. If structural
identification produces an incorrect ODE model, no coefficient values can make its
solutions match the sensor data. In this event, the structural identification process must
be repeated—often using information about why the previous attempt failed—until the
process converges to a solution, as shown diagrammatically in Fig. 2. In linear physical
systems, structural identification and parameter estimation are fairly well understood.
The difficulties—and the subtleties employed by practitioners—arise where noisy or
incomplete data are involved, or where efficiency is an issue. See [59,66] for some
examples. Innonlinear systems, however, both procedures are vastly more difficult—the
type of material that is covered only in the last few pages of standard textbooks.

Unlike system identification software used in the control theory community, PRET is not
just an automated parameter estimator; rather, it uses sophisticated reasoning techniques to
automate the structural phase of model building as well. The basic paradigm is “generate
and test”. PRET first uses its encoded domain theory—the upper ellipse in Fig. 1—to
assemble combinations of user-specified and automatically generated ODE fragments into
a candidate model. In a mechanics problem, for instance, the generate phase uses Newton’s
laws to combine force terms; in electronics, it uses Kirchhoff’s laws to sum voltages in a
loop or currents in a cutset. In order to test a candidate model, PRET performs a series of
inferences about the model and the observations that the model is to match. This process
is guided by two important assumptions: that abstract reasoning should be chosen over



142 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

lower-level techniques, and that any model that cannot be proved wrong is right. PRET’s
inference engine uses an encoded mathematical theory (the lower ellipse in Fig. 1) to search
for contradictions in the sets of facts inferred from the model and from the observations. An
ODE that is linear, for instance, cannot account for chaotic behavior; such a model should
fail the test if the target system has been observed to be chaotic. Furthermore, establishing
whether an ODE is linear is a matter of simple symbolic algebra, so the inference engine
should not resort to a numerical integration to establish this contradiction. Like the domain
theory, PRET’s ODE theory is designed to be easily extended by an expert user.

To make these ideas more concrete, consider the spring/mass system shown at the top
right of Fig. 3. To instruct PRET to build a model of this system, a user would enter
the find-model call at the left of the figure. (PRET also has a GUI that leads users
through this interaction without subjecting them to this syntax.) Thedomain statement
instantiates the relevant domain theory; the next two lines inform PRET that the system

Fig. 3. Modeling a simple spring/mass system. In this example call to PRET, the user first sets up the problem, then
makes five observations about the position coordinatesq1 andq2, hypothesizes nine different force terms, and
finally specifies resolution and range criteria that a successful model must satisfy. Angle brackets (e.g.,<time>)
identify state variables and other special keywords that play roles in PRET’s use of its domain theory. We use
teletype font in the body of this paper to identify terms that play roles in a user’s interaction with PRET.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 143

has two point-coordinate state variables.3 Observations are measured automatically
by sensors and/or interpreted by the user; they may be symbolic or numeric and can take
on a variety of formats and degrees of precision. For example, the first observation in
Fig. 3 informs PRET that the system to be modeled is autonomous;4 the second states that
the state variableq1 oscillates.Numeric observations are physical measurements made
directly on the system. An optional list ofhypotheses about the physics involved—e.g.,
a set of ODE terms (“model fragments”) that describe different kinds of friction—may be
supplied as part of thefind-model call; these may conflict and need not be mutually
exclusive, whereas observations are always held to be true. Finally,specifications
indicate the quantities of interest and their resolutions. The ones at the end of Fig. 3, for
instance, require any successful model to matchq1 to within 1% and one microsecond over
the first 120 seconds of the system’s evolution. It should be noted that this spring/mass
example is representative neither of PRET’s power nor of its intended applications. Linear
systems of this type are very easy to model [5,66]; no engineer would use a software tool
to do generate-and-test and guided search on such an easy problem. We chose this simple
system to make this presentation brief and clear.

To construct a model from the information in thisfind-model call, PRET uses the
mechanics domain rule(point-sum <force> 0) that is encoded in its knowledge
base to combine hypotheses into an ODE. In the absence of any domain knowledge—
omitted here, again, to keep this example short and clear—PRET simply selects the first
hypothesis, producing the ODEk1q1 = 0. This candidate model then passes to the test
phase for comparison against the observations. The model tester, implemented as a custom
first-order logic inference engine [83], uses a set of general rules about ODE properties
to draw inferences from the model and from the observations. In this case, a SCHEME5

function called on the ODEk1q1 = 0 establishes the fact(order <q1> 0), which
expresses that the highest derivative ofq1 in this model is zero. Reasoning from this fact
and the(oscillation <q1>) observation in thefind-model call, PRET uses the
following two rules from its ODE theory to establish a contradiction:

(<- (not-oscillation (var StateVar))
((linear-system)
(autonomous (var StateVar))
(order (var StateVar) (var N))
(< (var N) 2))) (1)

(<- (falsum)
((oscillation (var StateVar))
(not-oscillation (var StateVar)))) (2)

Rules are represented declaratively using a logic-based formalism; each implication is a
generalized Horn clause [9], written—following SCHEME convention—in prefix notation.
A clause(<- head body) has the usual meaning: thehead is implied by the conjunction

3 As described later in this paper, PRET uses a variety of techniques to infer this kind of information from the
target system itself; to keep this example simple, we bypass those facilities by giving it the information up front.

4 That is, it does not explicitly depend on time.
5 PRET is written in SCHEME [75].



144 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

of the formulae in thebody; falsum is the formula that represents inconsistency. The
first rule expresses that a state variablexi of a linear system does not oscillate if its
order (i.e., the highest derivative that appears in the model) is less than two and the
physical system is autonomous; the second simply states that no state variable can be
oscillatory and non-oscillatory at the same time. The way PRET handles this first candidate
model demonstrates the power of its abstract-reasoning-first approach: only a few steps of
inexpensive qualitative reasoning suffice to let it quickly discard the model.

PRET tries all combinations of<force> hypotheses at single point coordinates, but all
these models are ruled out for qualitative reasons. It then proceeds with ODE systems that
consist oftwo force balances—one for each point coordinate. One example of a candidate
model of this type is

k1q1+m1q̈1= 0,

m2q̈2= 0.

PRET cannot discard this model by purely qualitative means, so it invokes its nonlinear
parameter estimation reasoner (NPER), which uses knowledge derived in the structural
identification phase to guide the parameter estimation process (e.g., choosing good
approximate initial values and thereby avoiding local minima in regression landscapes)
[16]. The NPER finds no appropriate values for the coefficientsk1, m1, andm2 such that
any solution of this ODE matches the numeric time series, so this candidate model is also
ruled out. This, however, is a far more expensive proposition than the simple contradiction
proof of the fact(order <q1> 0)—roughly five minutes of CPU time, as compared to
a fraction of a second—which is exactly why PRET’s inference guidance system is set up
to use the NPER only as a last resort, after all of the more-abstract reasoning tools in its
arsenal have failed to establish a contradiction.

After having discarded a variety of unsuccessful candidate models via similar proce-
dures, PRET eventually tries the model

k1q1+ k2(q1− q2)+m1q̈1= 0,

k3q2+ k2(q1− q2)+m2q̈2= 0.

Again, it calls the NPER, this time successfully. It then substitutes the returned parameter
values for the constantsk1, k2, k3, m1, and m2 and integrates the resulting ODE
system with fourth-order Runge–Kutta, comparing the result to the numeric time-series
observation. The difference between the integration and the observation stays within
the specified resolution, so the numeric comparison yields no contradiction and this
candidate model, together with its parameter values, is returned as the answer.6 If the
list of user-supplied hypotheses is exhausted before a successful model is found, PRET

generates hypotheses automatically using Taylor-series expansions on the state variables—
the standard engineering fallback in this kind of situation. This simple solution actually
has a far deeper and more important advantage as well, as discussed later in this paper: it
confers black-box modeling capabilities on PRET.

6 If more than one adequate model exists, PRET returns the first one it encounters.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 145

The technical challenge of this model-building process is efficiency; the search space
is huge—particularly if one resorts to Taylor expansions—and so PRET must choose
promising model components, combine them intelligently into candidate models, and
identify contradictions as quickly and simply as possible. Simple hypothesis enumeration
would create a combinatorial explosion. This profoundly influenced the design goals for
both phases of the model-building process. In particular, PRET’s generate phase must
exploit all available domain-specific knowledge insofar as possible. A modeling domain
that is too small may omit a key model; an overly general domain has a prohibitively
large search space. By specifying the modeling domain, the user helps PRET identify what
the possible or typical “ingredients” of the target system’s ODE are likely to be, thereby
narrowing down the search space of candidate models. This “grey-box” modeling approach
differs from traditional “black-box” modeling, where the model must be inferred only
from external observations of the target system’s behavior. (PRET can actually do both, as
mentioned in the previous paragraph.) It is also more realistic, as described in more depth
in Section 2: the engineers who are PRET’s target audience do not operate in a complete
vacuum, and its ability to leverage the kinds of domain knowledge that such users typically
bring to a modeling problem lets PRET tailor the search space to the problem at hand.

The key to our approach is to classify model and system behavior at the highest possible
abstraction level. As demonstrated in the example above, high-level techniques like
symbolic algebra can be used to remove large branches from the search space; knowledge
that the target system oscillates, for instance, lets PRET quickly rule out any autonomous
linear ODE model of order less than two. In other situations, pruning a single leaf off the
tree of possible models can be extremely expensive (e.g., estimating parameter values for a
nonlinear ODE prior to a final corroborative simulation/comparison run). Efficient search,
then, requires rapid, accurate selection of the appropriate reasoning mode—a difficult,
dynamic problem that depends on how much PRET knows about the target system at a
given stage of the model-building process. Judicious use of domain-specific knowledge
is also important to speeding the modeltesting phase. Some analysis methods—such as
creep tests in viscoelastic systems, for example—are extremely powerful, but only apply
in specific domains. Other methods, such as phase-portrait analysis, apply to all dynamical
systems, but are more general and arguably less powerful. To effectively build and test
models of nonlinear systems, PRET must determine which methods are appropriate to a
given situation, invoke and coordinate them, and interpret their results.

Orchestrating this subtle and complex reasoning process is a difficult problem. PRET’s
solution rests on carefully crafted knowledge representation frameworks, described in
the following section, that allow for an elegant formalization of the essential building
blocks of an engineer’s knowledge and reasoning, and powerful automated reasoning
machinery, described in Section 3, that uses this formalized knowledge to reason flexibly
about a variety of modeling problems. The input-output modeling techniques described
in Section 4—also omitted from the simplified example in Fig. 3—allow PRET to
autonomously explore the relationship between the inputs and outputs of a target system,
and to reason about multiple behavioral regimes. Working in concert, these methods allow
PRET to construct accurate, parsimonious models of the internal dynamics of nonlinear
systems in any domain that admits ODE models, ranging from toy problems like Fig. 3 to
difficult real-world applications. Section 5 covers three practical engineering examples—



146 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

a vehicle suspension, a water resource system, and a parametrically forced pendulum—
in some detail, and summarizes results on several other applications, including a radio-
controlled (R/C) car. In all of these cases, good models are crucial not only to the
understanding of the physics of the system, but also to the process of engineering design.
The core of a controller designed to direct the behavior of an R/C car, for instance, is
an ODE model of the device—information that is absent from a Radio Shack spec sheet.
Similarly, decision support for water resource systems depends critically on knowledge
about how changes (e.g., rainfall) propagate through the system, which is most effectively
captured by an ODE model, and the driven pendulum is the basic mechanical element
in many modern robotics systems. As an AI tool that automates the process of building
models of systems like this, PRET has many possible implications for and roles in
the practice of science and engineering: as a means of corroborating and/or evaluating
existing models and designs, as a medium within which to instruct newcomers, and as an
intelligent assistant, whose aid allows more time and creative thought to be devoted to other
demanding tasks.

In the AI literature, work on automatically finding a model for a given dynamic system
falls under the rubrics of “reasoning about physical systems”, “automated modeling”,
“machine learning”, and “scientific discovery”. The techniques presented in this paper
resemble ideas from all of these research areas. PRET’s representational scheme and its
reasoning about candidate models build on a large body of work in automated model
building and reasoning about physical systems (see, for example, [3,36,39,73,93,94]). In
particular, our emphasis on qualitative reasoning and qualitative representations and their
integration with numerical information and techniques falls largely into the category of
“qualitative physics” (e.g., [92]). The project in this branch of the literature that is most
closely related to PRET is the QR-based viscoelastic system modeling tool developed by
Capelo et al. [21], which also builds ODE models from time-series data. PRET is more
general; it handles linearand nonlinear systems in a variety of domains using a richer set
of model fragments that is designed to be adaptable. (Indeed, one of PRET’s implemented
modeling domains,viscoelastics, allows it to model the same problems as in [21].)

The problem of modeling dynamic systems has also been examined from the perspec-
tives of machine learning and scientific discovery (e.g., [57,63,88,91,97]). Target systems
for automated modeling tools range from general natural phenomena and systems (e.g.,
gravity, planetary motion) to specific natural systems (e.g., predator–prey systems) to en-
gineered systems (e.g., a radio-controlled car) to isolated behavioral episodes of engineered
systems (the radio-controlled car’s drive across the hallway last Wednesday). Correspond-
ingly, the spectrum of possible models of such target systems ranges from scientific the-
ories (which may even postulate newly discovered entities) to natural laws to equation
systems whose abstraction level is determined by task-driven engineering requirements.
Scientific discovery systems, as implied by their name, have traditionally emphasized the
discovery of scientific theories or entities. Therefore, research in scientific discovery must
address the question about whether the discovered theory accurately models the target
system (e.g., nature), or whether it just happens to match the observations that were pre-
sented to the discovery program. Likewise, machine learning systems routinely use valida-
tion techniques (such as cross-validation) in order to ensure the “accuracy” of the learned
model. PRET takes a strict engineering approach to the question of accuracy. Its goal is to



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 147

find an ODE system that serves as a useful model of the target systemin the context of en-
gineering tasks, such as controller design. PRET’s notion of “accuracy” is relative only to
the given observations: it finds an ODE system that matches the observations to within the
user-specified precision, and does not try to second-guess these specifications or the user’s
choice of observations. It is the user’s responsibility to ensure that the set of observations
presented to PRET and the supplied specifications reflect the engineering task at hand. It
is, of course, possible to use PRET as a scientific discovery tool by supplying several sets
of observations to it in separate runs and then unifying the results. PRET can also be used
to solve the kinds of cross-validation problems that arise in the ML literature: one would
simply use it to perform several individual validation runs and then interpret the results.

The project in the scientific discovery/machine learning branch of the literature that is
most closely related to PRET is LAGRANGE [30], which builds ODE models of completely
observed linear systems by applying regression techniques to time-series data. PRET and
LAGRANGE can model problems of similar complexity; they differ in that PRET can handle
nonlinear systems andincomplete data, while LAGRANGE cannot. This is reflected in their
internal complexity as well. Since linear models admit linear regression, which is much
easier than PRET’s vastly more computationally expensive nonlinear parameter estimation,
LAGRANGE’s model tester is simple, fast, and cheap, and so its generator can afford to
create a much larger number of models. PRET’s search space is not only much larger, but
much more expensive to navigate, hence the varied arsenal of techniques described in the
rest of this paper.

Because of the highly interdisciplinary nature of the contents of this article, there are
important relations to several other fields and disciplines. We have chosen to distribute
the related work discussion among the appropriate subsections, rather than gather it into a
separate section.

2. Representations for model building

A central problem in any automated modeling task is that the size of the search space
is exponential in the number of model fragments unless severe restrictions are placed
on the model-building process. Ideally, one would like to buildblack-box models using
general reasoning techniques that applied toany system and did not require anydomain
knowledge about the system under examination. The combinatorics of the generate phase
make this paradigm unrealistic. Most AI modeling work has taken aclear-box modeling
approach, in which one knows almost everything about what one is trying to model.
This is unrealistic for engineering practice. A good compromise isgrey-box modeling,
where partial information about the internals of the box—e.g., whether the system is
electronic or viscoelastic—is used to prune the search space down to a reasonable size.
The key to making grey-box modeling of nonlinear dynamical systems practical is a
flexible knowledge representation scheme that adapts to the problem at hand. Domain-
dependent knowledge can drastically reduce the search-space size, but its applicability
is fundamentally limited. The challenge in balancing these influences is to be able to
determine, at every point in the reasoning procedure, what knowledge is applicable and
useful.



148 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

Table 1
Example component representations

Component Proportional Differentiating Integrating

General e=Bf f = C de
dt e=A df

dt

Electrical v = Ri i = C dv
dt v =L di

dt

Mechanical v =Bf f =M dv
dt v =K df

dt

Our solution, termedcomponent-based modeling or CBM, combines a representation
that allows for different levels of domain knowledge, a set of reasoning techniques
appropriate to each level, and a control strategy that invokes the right technique at
the right time. In particular, we combine ideas from generalized physical networks
[79], a meta-level representation of idealized two-terminal elements, with traditional
compositional model building [36] and qualitative reasoning [92]. The intent is to span the
spectrum between highly specific frameworks that work well in a single, limited domain
(e.g., a spring/dashpot vocabulary for modeling simple mechanical systems) and abstract
frameworks that rely heavily upon general mathematical formalisms at the expense of huge
search space sizes (e.g., [17]).

2.1. The CBM paradigm: Representation

In the late 1950s and early 1960s, inspired by the realization that the principles
underlying Newton’s third law and Kirchhoff’s current law were identical,7 researchers
began combining multi-port methods from a number of engineering fields into a
generalized engineering domain with prototypical components [74]. The basis of this
generalized physical networks (GPN) paradigm is that the behavior of an ideal two-
terminal element—a “component”—may be described by a mathematical relationship
between two dependent variables: generalized flow and generalized effort, whereflow(t) ∗
effort(t) = power(t). This pair of variables manifests differently in each domain: (flow,
effort) is (current, voltage) in an electrical domain and (force, velocity) in a mechanical
domain. In bond graphs [60], another generalized representation paradigm that has seen
some use in the AI modeling literature, velocity is a flow variable and force is an effort
variable. The only difference between GPNs and bond graphs is a frame-of-reference shift.
While bond graphs are a good alternative to generalized physical networks—especially if
causality issues are a concern—converting them into ODE models is difficult, which makes
them less useful for the kinds of complex nonlinear modeling tasks that we address in this
paper. The GPN representation has three important advantages for model building. Firstly,
its two-port nature makes it easy to incorporate sensors and actuators as integral parts of
a model. For example, a current source often has an associated impedance that creates a
loading effect on the rest of the circuit. With a network approach, these effects naturally
become part of the model, just as they do in real systems. Secondly, GPNs bring out
similarities between components and properties in different domains. Electrical resistors

7 Summation of {forces, currents} at a point is zero, respectively; both are manifestations of the conservation
of energy.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 149

Fig. 4. Two systems that are described by the same GPN model: (a) a series RLC circuit and (b) a series
damper-spring-mass system.V is a voltage source in (a) and a velocity source in (b).

(v = iR) and mechanical dampers (v = fB) are physically analogous; both dissipate
energy in a manner that is proportional to the operative state variable, and so both can
be represented by a single GPN component that incorporates aproportional relationship
between the flow and effort variables. Two other useful GPN components instantiate
integrating and differentiating relationships; the representation also allows for flow and
effort source components, as shown in Table 1. See [60] or [79] for additional domains
and components. Thirdly, the GPN representation makes it very easy to incorporate
varying amounts and levels of information. This is closely related to its ability to capture
behavioral analogs. Both of the networks in Fig. 4, for example, can be modeled by a series
proportional/integrating/differentiating GPN; knowledge that the system is electronic or
mechanical would let one refine the model accordingly (to a series RLC circuit or damper-
spring-mass, respectively). The available domain knowledge, then, can be viewed as a
lens that expands upon the internals of some GPN components, selectively sharpening the
modelin appropriate and useful ways.

PRET currently incorporates five specific GPN-based modeling domains:mechanics,
viscoelastics,linear-electronics,linear-rotational, andlinear-
mechanics. Domains are constructed by domain experts, stored in the domain-theory
knowledge base, and instantiated by thedomain line of the find-model call.
Each consists of a set of component primitives and a framework for connecting those
components into a model. The basiclinear-electronics domain, for example,
was built by an electrical engineer; it comprises the components{linear-resistor,
linear-capacitor}, the standard parallel and series connectors, and some codified
notions of model equivalence (e.g., Thévenin). Specification of state variables in different
domains—type, frames of reference, etc.—is a nontrivial design issue. In themechanics
domain, a body-centered inertial reference frame is assumed, together with coordinates
that follow the formulation of classical mechanics [46], which assigns one coordinate
to each degree of freedom, thereby allowing all equations to be written without vectors.
The representation described in this section is designed to handle the coordinate issues
associated with the remaining domains. Finally, these modeling domains are dynamic: if a
domain does not contain a successful model, it automatically expands to include additional
components and connections. This procedure is described in the following section.

If a user wants to apply PRET to a system that does not fall in an existing domain,
he or she can either build a new domain from scratch—a matter of making a list of
components and connectors—or use one of PRET’s meta-domains: general frameworks
that arrange hypotheses into candidate models by relying on modeling techniques that



150 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

transcend individual application domains. Thexmission-line meta-domain, for
instance, generalizes the notion of building models using an iterative pattern, similar
to a standard model of a transmission line, which is useful in modeling distributed
parameter systems. Thelinear-plus meta-domain takes advantage of fundamental
linear-systems properties that allow the linear and nonlinear components to be treated
separately under certain circumstances, which dramatically reduces the model search
space. Both can be used directly or customized for a specific application domain, as
demonstrated in Section 5. We chose this particular pair of meta-domains as a good initial
set because they cover such a wide variety of engineering domains. We are exploring other
possibilities, especially for the purposes of modeling nonlinear networks.

Choosing a modeling domain for a given problem is not trivial, but it is not a difficult
task for the practicing engineers who are PRET’s target audience. Such a user would first
look through the existing domains to see if one matched his or her problem. If none were
appropriate, he or she would choose a meta-domain based upon the general properties of
the modeling task. If there is a close match between the physical system’s components and
the model’s components (i.e., it is a lumped parameter system), thenlinear-plus is
appropriate;xmission-line is better suited to modeling distributed parameter systems.
There is significant overlap between the various domains and meta-domains; a linear
electronic circuit can be modeled using the specificlinear-electronics domain,
the xmission-line meta-domain, or thelinear-plus meta-domain. In all three
cases, PRET will produce the same model, but the amount of effort involved will be very
different. The advantage of thelinear-electronics domain is its specialized, built-
in knowledge about linear electrical circuits, and the effect of this knowledge is to focus
the search. A capacitor in parallel with two resistors, for instance, is equivalent to a single
resistor in parallel with that capacitor. Thelinear-electronics domain “knows”
this, allowing it to avoid duplication of effort; the two meta-domains do not. Perhaps most
important of all, their generality and overlap make the meta-domains particularly helpful
if one does not know exactly what kind of system one is dealing with, which is not an
uncommon situation in engineering practice.

There are a variety of ways to use generalized physical networks to help automate
PRET’s structural identification phase. One could create a library of GPN components and
test each possible combination until a valid model is found. This method is obviously
impractical, as simple enumeration creates an exponential search space—a severe problem
if the component library is large, as must be the case if one is attempting to model
nonlinear systems.8 A more-intelligent method is to use a hierarchy of domain-dependent
and -independent knowledge to direct the search, as described next.

2.2. The CBM paradigm: Reasoning

The GPN representation is an effective basis for dynamic modeling domains whose
complexity naturally rises and falls according to the available information about the target
system. A general domain—e.g., the set of all dynamical systems—has a complex search

8 Nonlinear terms are somewhat idiosyncratic, and each would have to be supplied as a separate library entry.
This issue has not arisen in previous work on GPNs because they have been applied mainly to linear problems.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 151

Fig. 5. A hierarchy of model building domains.

space; a specific domain like the set of conservative mechanical systems has a much
smaller one. The challenge in reasoning about GPN models is to tailor the reasoning to the
knowledge level in such a way as to prune the search space to the minimum. Organizing
domains into a hierarchy of generality—as shown in Fig. 5—is not enough; what is needed
is a hierarchical set of analysis tools, as well as a means for assessing the situation and
choosing which tool is appropriate.

Focused, appropriate analysis is critical to the efficiency of the automated model
building process. As demonstrated in the spring/mass example of Fig. 3, invalid models
can often be ruled out using purely qualitative information, rather than expensive point-by-
point numerical comparisons. The challenge in designing the component-based modeling
paradigm was to come up with a framework that supported this kind of reasoning. The
key idea is that different analysis techniques are appropriate in different domains, and
our solution combines a structured hierarchy of analysis tools, part of which is shown in
Table 2, with a scheme that lets the GPN component type and domain knowledge dictate
which tools to use.Cell dynamics is a geometric reasoning technique that classifies a phase
portrait qualitatively using simple discretized heuristics.Delay-coordinate embedding lets
one infer the dimension and topology of the internal system dynamics from a time series
measured by asingle output sensor. Nonlinear time-series analysis is a blanket term for
classification that follows the{attractors, bifurcations, . . .} ontology of nonlinear dynamics.
Linear systems analysis refers to the techniques taught to undergraduate engineers (pole-
zero diagrams, step response, etc.). Analysis tools for restricted linear systems—e.g., creep
testing—are highly domain-specific. Tools at any level of the table apply at all lower levels
as well. See Section 4.1 for further details.

Reasoning about model-building proceeds in the obvious manner dictated by this
hierarchy: if no domain knowledge about the target system is available (i.e., the true
“black box” situation), then models are constructed using general reasoning techniques
and analysis tools that apply toall ODEs—those in the top line of Table 2. This highly
general approach is computationally expensive but universally applicable. (Combined with
the Taylor-series hypothesis generation, this layer makes PRET a capable, albeit slow,
black-box modeling tool.) If the system is known to be linear, the extensive and powerful
repertoire of linear analysis tools developed over the last several decades makes the model
building and testing tasks far less imposing. Moreover, system inputs (drive terms) in linear



152 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

Table 2
Component type and domain knowledge dictate what analysis
tools PRET should use to build and test models. Tools higher in
this table are more general but their results can be less powerful

System type Analysis tools

Nonlinear Cell dynamics [56]
Delay-coordinate embedding [80]
Nonlinear time series analysis [14,86]

Linear Linear system analysis [76]

Restricted linear Domain dependent (e.g., [21])

systems appear verbatim in the resulting system ODE, which makes input/output analysis
much easier, as described in Section 5. In more-restricted domains, analysis tools are even
more specific and powerful. In viscoelastics, for example, three qualitative properties of a
“strain test” reduce the search space of possible models to linear [21].

Given all of this machinery, PRET’s generate phase proceeds as follows. First, a
candidate model is constructed from the list of hypotheses—in the form of GPN
components—that are built into the domain and/or supplied by the user. These component
hypotheses are combined into models using the rules of the operative domain: e.g.,
Newton’s Third Law formechanics and Kirchhoff’s Voltage Law forelectrical-
xmission-line. Note that this entails selecting and using the properconnectors as
well, as model topology is highly domain-specific. Special keywords within the hypotheses
(e.g.,<force> or <voltage>) serve as links to these domain rules. Equally important,
these keywords (and the declarative nature of PRET’s overall knowledge representation
scheme; see Section 3) make the flow of the reasoning easily understandable to application
engineers, allowing them to modify or augment the domain rules. The model generator
selects hypotheses via simple enumeration on the list of built-in and user-supplied
hypotheses, beginning with all possible one-term models, then all possible two-term
models, and so on. If no model in this sequence is consistent with the observations, it
uses a variety of power-series expansions to automatically generate new ODE terms, adds
them to the end of the hypothesis list, and continues the process.

This model testing process is guided by the hierarchy in Fig. 5 and the analysis tools
in Table 2. If the system is nonlinear, for example, the cohort of nonlinear tools is applied
to the sensor data to determine the dimensiond of the dynamics; this fact allows PRET to
automatically disregard all models of order< d . Other nonlinear analysis techniques yield
similar search-space reductions. If the system is linear, many more tools apply; these tools
are cheaper and more powerful than the nonlinear tools, and so the CBM framework guides
PRET to use the former before the latter. Knowledge that the target system is oscillating,
for example, not only constrains any autonomous linear model to be of least second order,
but also implies some constraints on its coefficients; this reasoning is purely symbolic and
hence very inexpensive. These rules, too, are represented declaratively, using keywords that
follow the language of mathematics texts (e.g.,deriv, jacobian, etc.), which allows
experts to customize the ODE theory as well.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 153

The generate and test phases are interleaved, as shown in Fig. 2: if the generate phase’s
first-cut search space does not contain a model that matches the observed system behavior,
the GPN modeling domain dynamically expands to include more-esoteric components.
As described in Section 2.1, for example, thelinear-electronics domain begins
with the components {linear-resistor, linear-capacitor}. If all models in
this search space are rejected, the CBM framework automatically expands the domain to
include the component typelinear-inductor. The intuition captured by this notion
of “layered” domains is that inductors are much less common, in practical engineering
systems, than capacitors. Expanding domains beyond linear components is more difficult,
since the number of possible component types increases dramatically and any ordering
scheme necessarily becomes somewhatad hoc. In many engineering domains, however,
there exist well-defined categorization schemes that help codify this procedure. Tribology
texts, for example,9 specify different kinds of friction for different kinds of ball bearings,
as well as some notions about which of those are common and should be tried first, and
which are rare and esoteric [48]. The CBM paradigm is designed to let an expert user—a
“domain builder”—encode this kind of information quickly and easily, and to let PRET

leverage that knowledge in the model-building process. Because a domain expert should
not be required to have a detailed understanding of the internal structure of the program
or a working knowledge of SCHEME, CBM provides a simple construct for specifying the
structure of this information: a natural number that prioritizes possible components. The
meta-domain facilities also simplify this process; building a customized domain can be as
simple as adding a few components to a meta-domain. Theviscoelastics domain,
for instance, is an instantiation of thexmission-linemeta-domain with a proportional
and an integrating element in series. See Section 5 for more examples.

The primary disadvantage of the CBM paradigm—and of energy-based modeling
approaches in general—is that their assumptions constrain the types of problems that can
be modeled. Nonphysical systems like currency exchanges, for instance, do not necessarily
obey conservation of energy, and so their dynamics cannot be described by GPNs. There
has been some recent work that extends energy-based modeling paradigms for problems
that may not obey the traditional (effort-flow) relationships. Thermal systems, for instance,
seem to have a direct electrical analogy: temperature to voltage and heat flow to current.
However, the product of temperature and heat flow is not power; rather, heat flow itself
is power. One thermal modeling tool [60] works around this by treating temperature as an
effort variable and heat flow as a flow variable, but this requiresad hoc techniques to couple
a thermal subsystem to a more traditional subsystem (e.g., electrical or mechanical) where
the traditional power relationship holds. Another interesting approach, termedForrester
System Dynamics (FSD) [42,49], has met with success in diverse areas where no power
relationship exists, such as biology, epidemiology, sociology, economics, and strategic
management. FSD models consist of a network of components that model the flow or
accumulation ofother important conserved quantities (e.g., pollutants in a river, ecological
populations, or buyers in a market). This is a natural extension to our framework, and
we are currently working out how to incorporate a more-general notion of conservation
into our current implementation, which would greatly expand the class of applications that

9 Tribology is the science of surface contact.



154 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

PRET can handle. This extension should be fairly straightforward; indeed, LeFèvre [65]
showed that FSD models are a subset of bond graphs that use only capacitance, modulated
flow sources, and generalized Kirchhoff’s voltage and current laws.

Once a GPN network is generated, the final step in the model-building process is to
convert it into ODE format. This conversion step, which rests upon powerful network-
theoretic principles that have been in the engineering vernacular for many decades, is
fairly easy to automate. In particular, PRET uses loop and node equations to convert a GPN
network with unspecified component values into an ODE (also with unspecified component
values). The mechanical details of the conversion algorithm are described in [32].

2.3. Component-based modeling: Summary

The component-based modeling paradigm’s hierarchy of qualitative and quantitative
reasoning tools, which relate observed physical behavior and model form, coupled with
its generalized physical network-based representation, provide the flexibility required for
grey-box modeling of nonlinear dynamical systems. This type of reasoning, wherein the
modeling tool has only partial knowledge of the internals of the target system, accurately
reflects the abstraction levels and reasoning processes used effectively by engineers
during the system identification procedure. The GPN representation is powerful enough
to describe a wide range of systems. It naturally captures similarities (e.g., between
mechanical damping and electronic resistance) and it adapts smoothly to different levels
of domain knowledge: the same GPN model can be abstract and general or highly specific,
depending on how much one knows about the system. This reduces PRET’s search space
by allowing it to work with GPN components—and the corresponding abstract, qualitative
reasoning techniques—as long as possible: up until the point when it converts the GPN
into a set of ODEs. Coupled with the domain and meta-domain facilities described in
Section 2.2, the CBM paradigm makes creating a domain simple: an expert need only
specify the prototypical components and connections. Optionally, he or she can also specify
efficient model construction techniques and data analysis tools for different situations,
and prescribe a set of rules to help identify the correct model quickly. This layered
domain/meta-domain structure makes it easy to apply PRET to new problems (e.g., the
human ear, which we are currently modeling with thexmission-line meta-domain).
The CBM paradigm also helps naïve users in that it allows hypotheses to take the form
that they do in engineering and physical sciences textbooks. This makes interacting with
PRET very natural; the user only needs to know the domain and its components, not the
physics of their function, interaction, and composition. Finally, the two-port nature of the
GPN representation lets PRET incorporate sensors and actuators as integral parts of the
model—an essential part of its solution to the input/output modeling problem, as described
in Section 4.

The novelty and utility of component-based modeling lie in its use of meta-level, two-
terminal components for automated modeling of nonlinear systems. Previous work in the
AI community using meta-level components similar to GPNs has typically been restricted
to reasoning about causality [89] and modeling hybrid systems [70]. Amsterdam’s work
on automated model construction in multiple physical domains [4] is an exception to this,
but it is limited to linear systems of order two or less. Capelo et al. [21], as described in the



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 155

previous section, build ODE models of linear viscoelastic systems by evaluating time series
data using qualitative reasoning techniques. Although these goals are similar to PRET’s, the
library of possible models is more restricted: it involves only two component types (linear
springs and linear dashpots). PRET’s CBM framework is much more general; not only does
it use a large and rich set of meta-level components for automated model building of linear
and nonlinear systems, but it also supports easy user customization of these components
and domains.

3. Orchestrating reasoning about models

As described in the previous section, PRET uses component-based representations, user
hypotheses, and domain knowledge to generate candidate models of a given target system.
In this section, we describe the reasoning framework in which PRET tests such a model
against observations of the target system. Like a human expert, PRET makes use of a variety
of reasoning techniques at various abstraction levels during the course of this process,
ranging from detailed numerical simulation to high-level symbolic reasoning. These modes
and their interactions are described in Section 3.1. The challenge in designing PRET’s
model tester was to work out a formalism that met two requirements: first, it had to facilitate
easy formulation of the various reasoning techniques; second, it had to allow PRET to
reason about which techniques are appropriate in which situations. In particular, reasoning
about both physical systems and candidate models should take place at an abstract level first
and resort to more-detailed reasoning later and only if necessary. To accomplish this, PRET

judges models according to the opportunistic paradigm “valid if not proven invalid”: if a
model is bad, there must be a reason for it. Or, conversely, if there is no reason to discard a
model, it is a valid model. PRET’s central task, then, is to quickly find inconsistencies
between a candidate model and the target system. Section 3.2 describes the reasoning
control techniques that allow it to do so.

3.1. Reasoning modes

PRET’s test phase uses six different classes of techniques in order to test a candidate
model against a set of observations of a target system:
• qualitative reasoning,
• qualitative simulation,
• constraint reasoning,
• geometric reasoning,
• parameter estimation, and
• numerical simulation.

In our experience (see Section 5), this set of techniques, described in the following
five subsections, provides PRET with the right tools to quickly test models against
the given observations. Parameter estimation and numerical simulation are low-level,
computationally expensive methods that ensure that no incorrect model passes the test.
Intelligent use of the other, more-abstract techniques in the list above allows PRET to
avoid these costly low-level techniques insofar as possible; most candidate models can be



156 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

discarded by purely qualitative techniques or by semi-numerical techniques in conjunction
with constraint reasoning. Section 3.2 describes how PRET uses meta control techniques
to exploit this by deciding which of these modes is most appropriate for each part of the
model test phase.

3.1.1. Qualitative reasoning
Reasoning about abstract features of a physical system or a candidate model is typically

faster than reasoning about their detailed properties. Because of this, PRET uses a “high-
level first” strategy: it tries to rule out models by purelyqualitative techniques [28,38,41,
92] before advancing to more-expensive semi-numerical or numerical techniques. Often,
only a few steps of inexpensive qualitative reasoning (QR) suffice to quickly discard a
model. Some of PRET’s qualitative rules, in turn, make use of other tools, e.g., symbolic
algebra facilities from the commercial package MAPLE [23]. For example, PRET’s encoded
ODE theory includes the qualitative rule that nonlinearity is a necessary condition for
chaotic behavior:

(<- (falsum)
((linear-system) ;; ode is linear
(chaotic))) ;; target system is chaotic (3)

This lets any linear model be discarded without performing more-complex operations10

such as, for example, a numerical integration of the ODE. PRET’s QR facilities are not only
important for accelerating the search for inconsistencies between the physical system and
the model; they also allow the user to express incomplete information [62]. For example,
the user might not know the exact value of a friction coefficient, but he or she might know
that it is constant and positive. This is useful not only in isolation, but in conjunction with
the constraint reasoning mode, as described later in this section.

3.1.2. Qualitative simulation
After using its qualitative reasoning facilities to the fullest possible extent and before

resorting to the numerical level, PRET attempts to establish contradictions by reasoning
about the states of the physical system [62]. It does not do full qualitative simulation [61];
rather, it envisions the state space of all possible combinations of qualitative values of state
variables and parameters. Specifically, PRET’s qualitative envisioning module constrains
the possible ranges of parameters in the candidate model. If the constraints become
inconsistent—i.e., the range of a parameter becomes the empty set—the model is ruled
out. Currently, the qualitative states contain only sign information(−,0,+). For example,
for the modelax + by = 0, the state(x, y)= (+,+) constrains(a, b) to the possibilities
(+,−) or (0,0) or (−,+). This strategy is faster than full qualitative simulation, but it is
also less accurate; it may let invalid models pass the test, but these models will later be
ruled out by the numeric simulator. However, for the models that do fail the qualitative
envisioning test, this test is much cheaper than a numeric simulation and point-by-point
comparison would be.

10Determining whether or not an ODE is linear involves calculation of the Jacobian, which is a simple symbolic
operation that PRET accomplishes via a single call to MAPLE, as shown in (4).



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 157

3.1.3. Constraint reasoning
Often, informationbetween the purely qualitative and the purely numeric levels is

also available. If a linear system oscillates, for example, the imaginary parts of at least
one pair of the roots of its model’s characteristic polynomial must be nonzero. If the
oscillation is damped, the real parts of those roots must also be negative. Thus, if the model
aẍ + bẋ + cx = 0 is to match andamped-oscillation observation, the coefficients
must satisfy the inequalities 4ac > b2 andb/a > 0. PRET uses expression inference [87]
to merge and simplify such constraints [58]. However, this approach works only for linear
and quadratic expressions and some special cases of higher order, and the expressions
that arise in model testing can be far more complex. For example, if the candidate
model ẍ + aẋ4 + bẋ2 = 0 is to match an observation that the system is conservative,
the coefficientsa and b must take on values such that the divergence−4aẋ3 − 2bẋ is
zero, below a certain resolution threshold, for the specified range of interest ofx. We are
investigating techniques (e.g., [37]) for reasoning about more-general expressions like this.

3.1.4. Geometric reasoning
Other qualitative forms of information that are useful in reasoning about models are

the geometry and topology of a system’s behavior, as plotted in the time or frequency
domain, state space, etc. A bend of a certain angle in the frequency response, for instance,
indicates that the ODE has a root at that frequency, which implies algebraic inequalities
on coefficients, much like the facts inferred from thedamped-oscillation above;
asymptotes in the time domain have well-known implications for system stability, and
state-space trajectories that cross imply that an axis is missing from that space. In order
to incorporate this type of reasoning, PRET processes thenumeric observations—curve
fitting, recognition of linear regions and asymptotes, and so on—using MAPLE functions
[23] and simple phase-portrait analysis techniques [13], producing the type of abstract
information that its inference engine can leverage to avoid expensive numerical checks.
These methods, which are used primarily in the analysis of sensor data [15], are described
in more detail in Sections 2.2 and 4. PRET does not currently reason about topology, but
we are investigating how best to do so [77,78].

3.1.5. Parameter estimation and numerical simulation
PRET’s final check of any model requires a point-by-point comparison of a numerical

integration of that ODE against all numerical observations of the target system. In order to
integrate the ODE, however, PRET must first estimate values for any unknown coefficients.
Parameter estimation, the lower box in Fig. 2, is a complex nonlinear global optimization
problem [54,90]. Given an ODE with unknown coefficients and a possibly noisy time-
series observation of some subset of its state variables, a parameter estimator must
find values for the unknown parameters of the ODE.11 In linear physical systems, this
procedure is fairly well understood. Innonlinear systems, however, it is vastly more
difficult; linear signal processing methods do not apply, so PRET must fall back on

11Note that this is not simply a curve-fitting problem; it actually amounts to inverting methods like Runge–
Kutta.



158 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

regression, and nonlinear regression landscapes typically exhibit local extrema that can
trap numerical methods.

PRET’s nonlinear parameter estimation reasoner (NPER) solves this problem using a
new, highly effective global optimization method that combines qualitative reasoning (QR)
and local optimization techniques. Space limitations preclude a thorough discussion of this
approach here; what follows is only a brief overview. Please see [16] for more details. The
basic idea is to use QR to do the abstract, broad-brush reasoning part of the optimization
problem and then to focus in using more-precise numerical methods. The core of the
NPER is ODRPACK [11,12], a robust nonlinear least-squares solver. Around this core is
built a layer of QR techniques that allow PRET to automatically interact with and exploit
ODRPACK’s unique and powerful features. Using qualitative observations—provided by
the user or inferred from other observations via any of the reasoning modes described
in the previous subsections—the NPER’s QR layer can, for instance, intelligently choose
starting values for the unknown coefficients, helping ODRPACK avoid local extrema in
the parameter landscape. QR can be used to determine cutoff frequencies for filtering
algorithms, so noise can be removed without disturbing the data’s structure. The NPERalso
uses QR to interpret ODRPACK’s results on an abstract level—quickly and yet correctly.
This demonstrates the importance and power of interaction among the various reasoning
modes. A qualitative result in the NPERabout the sign of a parameter or a constraint on a
product (e.g.,b2 > 4ac) can be used by the constraint reasoner, and vice versa. The truth
maintenance facilities of PRET’s logic inference system, described in the following section,
were designed to facilitate exactly this type of interaction.

3.2. Control of reasoning

A model should be ruled inconsistent if its mathematical properties conflict with
any known observation of the target system. The reasoning modes described in the
previous section play different roles in the search for inconsistency; PRET’s challenge in
orchestrating them properly was to test models against observations using the cheapest
possible reasoning mode and, at the same time, avoid duplication of effort. In order to
accomplish this, the inference engine—illustrated in Fig. 6—uses the following techniques
to represent and reason with knowledge about the target system and about candidate
models, and to guide the reasoning process by choosing and invoking the appropriate
modes and interpreting their results:
• SLD-based resolution,
• declarative dynamic meta-level control,
• a hierarchy of abstraction levels, and
• a simple form of truth maintenance.

3.2.1. SLD-based resolution
As is common for AI programs, PRET’s knowledge representation and reasoning

formalism is declarative: both object-level and meta-level knowledge are represented as
first-order logical formulae. The language in which observations and the ODE theory are
expressed is that of generalized Horn clause intuitionistic logic (GHCIL) [68]. Roughly,
GHCIL clauses are Horn clauses that also allow embedded implications in their bodies.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 159

Fig. 6. PRET’s architecture: an SLD-based inference engine performs deductions in generalized Horn clause logic
with negation as inconsistency, operates relative to various abstraction levels, is controlled by a meta theory, stores
intermediate results as relevant formulae, and interacts with the model generator of Section 2 and the input/output
modeling subsystem of Section 4.

The special atomic formulafalsum—which means inconsistency—may only appear as
the head of a clause. Such clauses are often calledintegrity constraints; they express
fundamental reasons for inconsistencies, e.g., that a system cannot be oscillatingand non-
oscillating at the same time (cf. rule (2)). PRET’s search for an inconsistency between the
observations and a particular candidate model amounts to an attempt to provefalsum.
A model is ruled out if and only if a contradiction exists between a mathematical property
of the physical system (e.g., the(oscillation <x>) observation of Fig. 3) and a
mathematical property of the model (e.g., the fact(no-oscillation <x>), derived
via the ODE theory from a root-locus analysis of some candidate model). Therefore,
provingfalsum is the critical mechanism in the model test procedure: if PRET can derive
falsum from the union of the observations and facts about a candidate model, then that
model is ruled out. This concept ofnegation as inconsistency [43] is the only form of
negation in our paradigm. Negation as failure, which is the standard form of negation in
PROLOG[82], is particularly undesirable for our purposes. Since we do not require the user
to supply all possible12 observations, the absence of knowledge cannot be used to generate
new knowledge.

PRET’s inference engine is an SLD resolution-based theorem prover [67]. For every
candidate model, this prover combines basic facts about the target system, basic facts about
the candidate model, and basic facts and rules from the ODE theory into one set of clauses,

12Here,possible meansexpressible with the implemented observation vocabulary.



160 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

and then tries to derivefalsum from that set. The basic facts about the system are the
observations from thefind-model call. The ODE theory comprises several dozen
rules like rules (1), (2), and (3). The basic facts about the current model are obtained by a
collection of SCHEME “model observer” functions that identify mathematical properties
of the model, e.g., that it is linear, of third order, etc. The following model observer
function, for example, called on a candidate modelthe-model, makes a call to the
MAPLE jacobian function, and returns the fact(linear-system) if no system state
variable appears in the resulting matrix.

(define (linear-system? the-model state-variables)
(let ((model-jacobian (jacobian the-model)))
(not (any-variable-in-matrix?

state-variables model-jacobian)))) (4)

Together with the ODE theory, these model observer functions, which are typically
non-logic-based, implement the basic operations found in any differential equations
text. Because the inference engine cannot invoke other functions directly, however, the
implementer of the ODE theory must use the special logical predicatescheme-eval to
call upon them. Whenever the inference engine attempts to prove a goal with this predicate,
the corresponding function is invoked automatically. Thescheme-eval predicate also
provides the link to all modules that implement other non-logical reasoning modes, such
as the constraint reasoner and the parameter estimator. For a more detailed discussion of
PRET’s logic system, including examples of howscheme-eval is used in the ODE
theory, see [52,83–85].

One of the most important advantages of this declarative reasoning framework is its
modularity and extensibility. It was intentionally designed so that working with it does not
require knowledge of any of the inner workings of the program, which allows mathematics
experts to easily modify and extend PRET’s ODE theory. Adding a reasoning mode to
PRET’s repertoire, for example, amounts to writing two or three Horn clauses, similar
to rules (1), (2), and (3). These Horn clauses interpret the results of the reasoning
mode by specifying the conditions under which those results contradict observations
about the target system. If a model observer function that evaluates the corresponding
mathematical property of a model does not exist, the expert would also have to write
a short SCHEME/MAPLE function like linear-system?, above. The existing ODE
theory provides ample models for these kinds of functions.

Declarative formalisms like the one described in this section are widely used by AI
systems. However, PRET uses declarative techniques not only for the representation of
knowledge about dynamical systems and their models, but also for the representation
of strategies that specify under which conditions the inference engine should focus its
attention on particular pieces or types of knowledge. This is the topic of the next two
subsections.

3.2.2. Declarative meta level control
Thecontrol strategy of a SLD-resolution theorem prover is defined by the function that

selects the literal that is resolved and by the function that chooses the resolving clause.
PRET provides meta-level language constructs that allow the implementer of the ODE



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 161

theory to specify thecontrol strategy that is to be used to accomplish this. The notion
of controlling resolution in a declarative manner originated in the late 1970s [26,44,45].
More recently, implemented logic programming languages (e.g., [7,47,51]) and planning
systems (e.g., [6,22]) have been influenced by these ideas. The declarative specification
of query optimization techniques for relational databases [24] can also be seen as a form
of declarative meta control. The intuition behind PRET’s declarative control constructs is,
again, that the search should be guided toward a cheap and quick proof of a contradiction.
As an example, consider the following (simplified and schematized) excerpt from the
knowledge base.

stable ← linear,all_roots_in_left_half _plane.

stable ← nonlinear, stable_in_all_basins.

hot(L) ← linear,goal(L, stable). (5)

A linear dynamical system has a unique equilibrium point, and the stability of that point—
and therefore of the system as a whole—can be determined by examining the system’s
eigenvalues, which is a simple symbolic manipulation of the coefficients of the equation.
Nonlinear systems, on the other hand, can have arbitrary numbers of equilibrium sets,
which can be expensive to find and evaluate. Thus, if a system is known to be linear, its
overall stability is easy to establish, whereas evaluating the stability of a nonlinear system
is far more complicated and expensive. PRET’s meta control predicates are intended to
allow the crafter of the knowledge base to prioritize checks in ways that are appropriate
to situations like this. Besides the predicatehot, the selection of the next literal may
also be specified using the predicatesbefore and notready. The order in which
clauses are used to resolve a chosen literal is specified using the meta control predicate
clauseorder. For a more detailed discussion of PRET’s meta control constructs, see
[7,52].

3.2.3. Reasoning at different abstraction levels
To every rule, the ODE theory implementer assigns a natural number, indicating its

level of abstraction: the lower theabstraction level number, the more abstract the rule.
These abstraction levels reflect the anticipated expense of the reasoning involved in a given
rule; they expressstatic control knowledge of the type: “In general, try to build proofs
involving qualitative properties before building proofs involving numeric properties”. The
meta predicates described in Section 3.2.2, in contrast, specifydynamic control—i.e., how
to build one particular proof in one particular situation. The implementation of this scheme
is straightforward; the inference engine proceeds to a higher abstraction level number
only if the attempt to prove thefalsum with ODE rules with lower abstraction level
numbers fails. (This means that bad choices for abstraction levels affect only speed, and
not correctness or completeness.) For example, thescheme-eval rule that triggers
numerical integration has a higher abstraction level number than thescheme-eval
rule that calls the qualitative simulation. This static abstraction level hierarchy facilitates
strategies that cannot be expressed by the dynamic meta-level predicates alone: whereas the
dynamic control rules impose anorder on the subgoals and clauses ofone particular (but
complete) proof, the abstraction levels allow PRET to omit less-abstract parts of the ODE



162 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

theory altogether. The omitted parts are considered only in a subsequent (less-abstract)
proof attempt if the more-abstract proof attempt fails. Therefore, PRET tries to build entire
proofs on a more-abstract level before even considering less-abstract rules. Since abstract
reasoning usually involves less detail, this approach leads to short and quick proofs of the
falsum whenever possible.

3.2.4. Storing and reusing intermediate results
In order to avoid duplication of effort, PRET stores formulae that have been expensive to

derive and that are likely to be useful again later in the reasoning process. Engineering
a framework that lets PRET store just the right type and amount of knowledge is a
surprisingly tricky endeavor. On the one hand, remembering every formula that has ever
been derived (e.g., in an ATMS [27]) is too expensive, especially since variables that
range over real numbers have prohibitively many potential instantiations.13 On the other
hand, many intermediate results are very expensive to derive and would have to be
rederived multiple times if they were not stored for reuse. PRET reuses previously derived
knowledge in three ways. First, knowledge about the physical system is global, whereas
knowledge about a candidate model is local to that model. Because of this, knowledge that
is independent of the current candidate model can be reused throughout the run. The fact
that a time series measured from the physical system contains a limit cycle, for example,
can be reused across all candidate models, but the fact that the current candidate model is
of second order must be thrown out when a new candidate model is considered.

Knowledge is also reused within the process of reasoning about one particular model.
Every time the reasoning proceeds to a less-abstract level, PRET needs all information
that has already been derived at the more-abstract level, so it stores this information rather
than rederiving it. PRET currently relies on the ODE theory implementer to help identify
what kinds of information fall into this category. This involves declaring a number of
predicates asrelevant [8], which causes all succeeding subgoals with this predicate to be
stored for later reuse.14 Currently, PRET recognizes special cases and generalizations of
previously proved formulae, but it maintains no contexts or labels [27] for intermediate
results. Unfortunately we do not have a clear-cut heuristic as to which predicates should
be declared relevant. Ultimately this is a matter of experimentation and experience. Good
candidates for relevancy, however, are formulae that are expensive to derive or likely to
be useful in multiple reasoning contexts. For example, the formula(linear-system),
which states that the current candidate model is a linear ODE, is established at a high
abstraction level by ascheme-eval goal. If the abstract proof of thefalsum fails,
subsequent (less-abstract) proofs would evaluate the samescheme-eval goal again if
PRET had not stored the(linear-system) fact for reuse. It is important to note that
inappropriate declarations of relevance, like badly chosen static abstraction levels, do not
lead toincorrect reasoning—only toslow reasoning.

Finally, many of the reasoning modes described in Section 3.1 use knowledge that
has been generated by previous inferences, which may in turn have triggered other

13Everett and Forbus [35] have shown that freeing facts for garbage collection can often solve that problem. As
an alternative solution, we are investigating the notion of “sparse truth maintenance”.

14The set of previously derived relevant formulae is currently implemented as a hash table.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 163

reasoning modes. As described at the end of Section 3.1.5, for instance, the nonlinear
parameter estimation reasoner relies heavily on qualitative knowledge derived during the
structural identification phase—e.g., a constraint (e.g., 4ac > b2) that has been derived by
a (symbolic) root-locus analysis—in order to avoid local extrema in regression landscapes.
To facilitate this, PRET gives these modules access to the set of formulae that have been
derived so far.

3.3. Reasoning about models: Summary

The declarative framework described in Sections 3.1 and 3.2 allows knowledge about
dynamical systems and their models to be represented in a highly effective manner. Since
PRET keeps its operational semantics equivalent to its declarative semantics and uses a
simple and clear modeling paradigm, it is extremely easy—even for non-programmers—to
understand and use it. PRET’s control knowledge works with that declarative knowledge
about systems and models in order to test the latter against the former quickly and
cheaply. This control knowledge is expressed as a declarative meta theory, which makes
the formulation of control knowledge convenient, understandable, and extensible. This
framework maintains correctness and completeness while guiding the model testing
process towards quick and cheap contradiction proofs. This particular way of controlling
reasoning and its instantiation to a combination of tactics—designed for and focused upon
a particular problem domain—constitute one of the contributions of the work described
in this article. None of the reasoning techniques described in Section 3.1 is new; expert
engineers routinely use them when modeling dynamical systems, and versions of most
have been used in at least one automated modeling tool. The set of techniques used by
PRET’s inference engine, the multimodal reasoning framework that integrates them, and
the system architecture that lets PRET decide which one is appropriate in which situation,
make the approach taken here novel and powerful.

4. Input-output modeling

Dynamical systems used in engineering applications are rarely passive. Rather, they
have both inputs and outputs, and the relationship between the two is a critical feature of
the system’s behavior—and thus an important part of its model. Moreover, many dynamical
systems have multiple behavioral regimes, and any successful model builder must be
able to reason about this property. This can be a daunting task, even for human experts;
selecting and exploring appropriate ranges of state variables, parameter values, etc., is a
subtle and difficult problem that has received much attention in the qualitative reasoning
community [2,13,95,96]. Manipulation of actuators and sensors so as to effect this kind
of exploration is another difficult problem; determining what experiments are possible
from a given initial condition with a given actuator configuration is the control-theoretic
problem known ascontrollability or reachability. For nonlinear systems, this is an open
problem; the automatic control community has developed some partial solutions for limited
classes of systems [81], but we are not aware of any systematic schemes for truly automatic
experiment planning, execution, and interpretation in nonlinear systems. Lastly, the results



164 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

of input-output analysis must be consolidated with any existing knowledge before they can
be used in the model-building process.

PRET’s input/output modeling facilities solve these problems using a new knowl-
edge representation and reasoning framework calledqualitative bifurcation analysis or
QBA. This framework, which is designed to support reasoning about input/output ef-
fects and the existence of multiple behavioral regimes, is based on ideas from hybrid
systems, nonlinear dynamics, and computer vision. Its representation is a new con-
struct termed thequalitative state/parameter (QS/P) space, which combines informa-
tion about the behavior of a complex system and the effects of its control parame-
ters (inputs) upon its behavior. QBA’s reasoning procedures emulate a classic tech-
nique from nonlinear dynamics known asbifurcation analysis, wherein a human ex-
pert changes a control parameter, classifies the resulting behavior, determines the regime
boundaries, and groups similar behaviors into equivalence classes. Putting these ideas
into physical practice requires yet another reasoning layer, which translates abstract
concepts about experiments, such as “measure the step response”, into low-level com-
mands that manipulate actuators and sensors in appropriate ways. PRET uses the knowl-
edge that results from the QBA procedure in both its generate and test phases, iter-
ating the analysis/knowledge consolidation steps if necessary until it finds one model
(or set of models) that accurately describes the target system in all specified operating
regimes.

4.1. The QBA paradigm: Representation

The model-building procedures described in Sections 2 and 3 are purely passive: given
a static set of observations made in a single operating regime, they produce a single ODE
model that accounts for that behavior. In order to reason about the relationships between
inputs and outputs, PRET needed to combine these facilities with a representation that
could handlemultiple sets of observations about a given system. Our solution, termed
thequalitative state/parameter space, is specifically designed to classify system behavior
and to support reasoning about different regimes thereof. For linear systems, there are
a variety of well-known and well-understood tools for doing this, such as step and
frequency response. Almost all of these analytical tools, however, are useless in nonlinear
problems. Because of this, nonlinear dynamicists typically reason about attractors in the
state space, and how the topology of those attractors changes (“bifurcates”) when the
system parameters are varied. This is the basis of the QBA framework.

One of the goals of the qualitative reasoning community is to abstract specific instances
of behavior into more-general descriptions of a system. Reasoning about time-series
voltage signals from two slightly different RLC circuits, for instance, requires detailed
examination of the envelopes and phase of two decaying sinusoids. The state-space
representation, which suppresses the time variable and plots voltage versus its time
derivative, brings out the similarity between these two behaviors in a very clear way; all
damped oscillations in linear systems, for instance, manifest on a state-space plot as similar
decaying spirals. Adiscretized version of the state-space representation can effectively
abstract away even more of the low-level details about the dynamics of a system while
preserving its important qualitative and invariant properties. The cell dynamics formalism



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 165

Fig. 7. Identifying aperiod-one limit cycle using the cell-dynamics method.

[55,56] discretizes a set ofn-dimensional state vectors onto ann-dimensional mesh of
uniform boxes orcells. The circular state-space trajectory in Fig. 7(a), for example—a
sequence of two-vectors of floating-point numbers—can be represented as the following
cell sequence

[. . . (0,0)(1,0)(2,0)(3,0)(4,0)(4,1)(4,2)(4,3) . . .]
Because multiple trajectory points are mapped into each cell, this discretized representation
of the dynamics is significantly more compact than the original series of floating-
point numbers and therefore much easier to work with. Using this representation, the
dynamics of a trajectory can be quickly and qualitatively classified using simple geometric
heuristics—in this case as alimit cycle. PRET’s intelligent sensor data analysis procedures
use this type of discretized geometric reasoning to “distill” out the qualitative features
of a given state-space portrait, allowing it to reason about these features at a much higher
(and cheaper) abstraction level. These automated phase-portrait analysis techniques, which
combine ideas from dynamical systems, discrete mathematics, and AI, are covered in more
detail in [15].

Raising the abstraction level of the analysis of individual sensor data sets, however,
is only a very small part of the power of qualitative analysis of state-space portraits.
Dynamical systems can be extremely complicated. Attempting to understand one by
analyzing a single behavior instance—e.g., system evolution fromone initial condition
at one parameter value, like Fig. 7(a)—is generally inadequate. Rather, one must vary a
system’s inputs and study the change in the response. Even in one-parameter systems,
however, this procedure can be difficult; as the parameter is varied, the behavior may vary
smoothly in some ranges and then change abruptly at certain critical parameter values.
A thorough representation of this behavior, then, requires a “stack” of phase portraits:
at least one for each interesting and/or distinct range of parameter values. Constructing
such a stack requires automatic recognition of these regimes, and the cell dynamics
representation makes this easy. Fig. 7(b), for example, shows another period-one limit
cycle—one with different geometry but identical topology. The key concept here is that
a set of geometrically different and yet qualitatively similar trajectories—an “equivalence
class” with respect to some important dynamical property—can be classified as a single
coherent group of state-space portraits.

Consider, for example, the driven pendulum system described by the ODE

θ̈ (t)+ a2θ̇ (t)+ a1 sinθ(t)= d1 sinαt



166 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

Fig. 8. The state/parameter (S/P) space portrait of the driven pendulum: a parameterized collection of phase
portraits of the device at various drive frequencies. Each (θ,ω) slice of thisS/P-space portrait is a standard
state-space plot at one parameter value.

with drive amplituded1 and drive frequencyα. a1 anda2 are physical constants of the
system representing the effects of the pendulum’s mass length, and damping factor, as well
as gravity; the state variables of this system areθ andω= θ̇ . In many experimental setups,
the drive amplitude and/or frequency are controllable: these are the “control parameter”
inputs to the system. The behavior of this apparently simple device is really quite
complicated and interesting. For low drive frequencies, it has a single stable fixed point;
as the drive frequency is raised, the attractor undergoes a series of bifurcations between
chaotic and periodic behavior [29]. These bifurcations do not, however, necessarily cause
the attractor tomove. That is, the qualitative behavior of the system changes and the
operating regime (in state space) does not. Traditionalbifurcation analysis of this system
would involve constructing phase portraits of the system, like the ones shown in Fig. 7,
at closely spaced control parameter values across some interesting range. Traditional
AI/hybrid representations [18,71] do not handle this smoothly, as the operating regimes
involved are not distinct. If, however, one adds an axis to the space, most of these problems
vanish. Fig. 8 describes the behavior of the driven pendulum in thisstate/parameter space
(S/P space) representation. Eachθ,ω slice of this plot is a state-space portrait, and the
control parameter varies along theDrive Frequency axis.

Our final step in the development of the representation for the qualitative bifurcation
analysis framework is to combine the state/parameter space idea pictured in Fig. 8 with
the qualitative abstraction of the cell dynamics of Fig. 7, producing thequalitative
state/parameter space (QS/P space) representation. A QS/P-space portrait of the driven
pendulum is shown in Fig. 9. This representation is similar to the state/parameter space
portrait in Fig. 8, but it groups qualitatively similar behaviors into equivalence classes, and
then uses those groupings to define the boundaries of qualitatively distinct regions. The
QS/P space is an extremely effective way to capture information about actuator signals,



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 167

Fig. 9. Thequalitative state/parameter-space (QS/P-space) portrait of the driven pendulum. In this abstraction of
the state/parameter space, qualitatively similar behaviors are grouped into equivalence classes and those groupings
are used to define the boundaries of qualitatively distinct regions of state/parameter space.

sensor data, and different behavioral regions in a single compact representation. It lets
the model builder leverage the knowledge that its regions—e.g., the five slabs in Fig. 9—
all describe the behavior of thesame system, at different parameter values. This is very
useful in reducing the complexity of the model generation and test phases. The QS/P-
space representation also contributes to automatic experiment planning and execution.
Among other things, it allows PRET to reason effectively about test inputs; a good test
input excites the behavior in a useful but not overwhelming way, and choosing such an
input is nontrivial. The following section elaborates on all of these ideas.

4.2. The QBA paradigm: Reasoning

The “input” part of PRET’s input-output reasoning takes place in theintelligent sensor
data analyzer [15]. This subsystem first reconstructs any hidden dynamics from the sensor
data. This step is necessary because fullyobservable systems, in which all of a system’s
state variables can be measured, are rare in normal engineering practice. Often, some of
the state variables are either physically inaccessible or cannot be measured with available
sensors. This is control theory’sobserver problem: the task of inferring the internal state of
a system solely from observations of its outputs. (There has been some work in the AI/QR
community on this topic; see [40].) Delay-coordinate embedding [1,80], PRET’s solution to
this problem, creates anm-dimensionalreconstruction-space vector fromm time-delayed
samples of data from a single sensor. The central idea is that the reconstruction-space
dynamics and the true (unobserved) state-space dynamics are topologically identical. This
provides a partial solution to the observer problem, as a state-space portrait reconstructed
from a single sensor is qualitatively identical to the true multidimensional dynamics of the
system. Given a reconstructed state-space portrait of the system’s dynamics, the intelligent
sensor data analyzer’s second phase uses geometric reasoning to parse the trajectories
into transients and attractors, and then distills out the qualitative properties of the latter—
e.g.,limit-cycle, fixed-point, chaotic, etc.—using the cell dynamics method
described in the previous section.



168 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

Reasoning about actuators, which takes place in PRET’s intelligent actuator controller
[33], is much more difficult. The problem lies in the inherent difference between passive
and active modeling. It is easy to recognize damped oscillations in sensor data without
knowing anything about the system or the sensor, but using an actuator requires a lot of
knowledge about both. Different actuators have different characteristics (range, resolution,
response time, etc.); consider the difference between the time constants involved in turning
off a burner on a gas versus an electric stove, and what happens if the cook is unaware
of this difference. The effect of an actuator on a system also depends intimately on how
the two are connected. For example, a DC motor may be viewed as a voltage-to-RPM
converter with a linear range and a saturation limit. How that motor affects a driven
pendulum depends not only on those characteristics, but also on the linkage between the
two devices, (e.g., a direct rotary drive configuration versus a slot/cam-follower setup).
To execute experiments successfully, PRET must model these kinds of properties and
effects. It does so by exploiting the two-port nature of the GPN representation that was
introduced in Section 2.1: the effects of an actuator simply become part of the model
via additional modeling components. Note that introduction of an actuator necessarily
makes the system nonautonomous, which means that the model must include ODE terms
that explicitly contain the variable<time>. Moreover, the explicit form of the actuator’s
effect on the system may not be known exactly; even if PRET transmits a known sinusoidal
voltage to a particular motor, for instance, that motor may respond in a nonlinear manner
(e.g., saturating above some threshold voltage). PRET’s framework handles these kinds of
problems automatically; the only difference between modeling drive effects and modeling
internal physics is that the ODE terms that describe the former are functions of time as
well as of the state variables.

Qualitative bifurcation analysis requires interleaved input and output reasoning, in which
PRET uses its sensors and actuators to probe the system at a variety of control parameter
values to find interesting behaviors and identify boundaries between different regimes.
Currently, the user must specify the applicable range for each parameter, in the form
of a specification. The QBA reasoner simply scans each of these ranges in turn,
classifying the results as described above; it then zeroes in on the bifurcations using a
simple bisecting search. These bifurcations are the dividing lines between regimes in the
QS/P-space portrait of the system, and the qualitative classifications are the labels for the
regimes. The results of the QBA process are twofold: a QS/P-space representation of the
system dynamics—like the one shown in Fig. 9—and a set of qualitative observations
similar to those a human engineer would make about the system, such as “When the control
parameterρ is in the range [1.2, 5.6], the state variablex1 oscillates”. This qualitative
information is useful in that it raises the abstraction level of PRET’s reasoning about
models, in the manner described at length in Section 3. The information captured in the
QS/P-space portrait is also used by PRET’s generate phase to reason about candidate
models. For example, a model that is valid in one regime may be valid in other regimes that
have the same qualitative behavior. And even when the qualitative behavior is different,
continuity suggests that a neighboring regime’s model is a reasonable starting point.
(See Section 5 for discussion of some of the associated caveats.) Coupled with the ideas
described in Section 2, this kind of reasoning lets the generate phase avoid combinatorial
explosions in the search space.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 169

Fig. 10. Effective planning, execution, and interpretation of experiments will require PRET to reason about which
ones areuseful andpossible.

Apart from the identification of regime boundaries, QBA is a relatively mechanical
procedure, and we are currently working on making it more intelligent. Specifically, it
would be useful to focus the experiments using the knowledge that PRET has about
the target system (and perhaps the candidate model), rather than simply doing a simple
scan of each control parameter range. This will require determining what experiments
are possible, and which of those are useful to the task at hand. As shown in Fig. 10,
these sets of experiments may or may not overlap. Theutility of a particular experiment
depends on what PRET knows and what it is trying to establish. It would not be useful,
for instance, to duplicate existing knowledge, but utility-related reasoning is not always
so simple. If PRET were trying to build a full-range model of a driven pendulum, but
all of its observations concerned small-angle motions (where the dynamics looks like a
simple harmonic oscillator), it might be useful to investigate initial conditions with larger
angles. Experiment utility also depends on the domain. Impulse response is an extremely
useful analytic tool if the system is known to be linear; if one can confine the problem
to an even narrower domain, the available tools are even more powerful, as described in
conjunction with Table 2. The GPN-based representation described in Section 2.1 will play
a critical role in the solution to this problem, as it is specifically designed to incorporate and
exploit different levels of knowledge. The declarative meta control constructs described in
Section 3.2 can be used to guide PRET’s input/output exploration in a dynamic fashion
that adapts to its evolving knowledge about the system (cf. example (5)). Determining
what experiments arepossible is even more challenging; to do so, PRET must reason
about what state-space points are reachable from a given initial condition with a given
actuator configuration—which requires solving the controllability/reachability problem.
In the pendulum modeling scenario, for instance, it might be extremely useful to find out
what happens when the device is balanced at the inverted point, but getting the system
to that point is a significant real-time control problem in and of itself. Solving problems
like this requires reasoning about the structure and function of the system, the actuators,
and the combination of the two, given only partial information about each. The GPN-
based representation, again, will be critical to this solution, as it allows PRET to model the
actuator/system combination explicitly. This type of reasoning—even more so than that
involved in determining utility—depends on how much PRET knows about the domain of
the target system.



170 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

4.3. Summary: Automating input-output modeling

The goal of input-output modeling is to apply a test input to a system, analyze the
results, and learn something useful from the cause/effect pair. Automating this process
is worthwhile for a variety of reasons. It makes PRET’s expert knowledge useful to
novices, allows it to corroborate and verify an expert’s results, and represents an important
step towards the type of fully autonomous operation that is required for many real-
world AI applications (e.g., [53,72]). Automating the input/output analysis procedure is
hard and interesting, from both AI and engineering standpoints. In particular, planning,
executing, and interpreting experiments requires some fairly difficult reasoning about
what experiments are useful and possible. Research on these general classes of reasoning
problems is ongoing in the control theory/operations research and AI communities,15

and many of the specific techniques used in the design and implementation of the QBA
framework have appeared in one or both of these contexts. The new idea here is the notion
of working out a systematic scheme for truly automatic experiment planning, execution,
and interpretationfor the purposes of modeling nonlinear systems.

Our solutions to the problems of reasoning about sensors, actuators, and how to use
them to perform experiments that are useful to the modeling process are embodied in
PRET’s ISAAC (intelligent sensor analysis and actuator control) module. ISAAC rests on
a hybrid construct, thestate/parameter (S/P) space, which combines information about the
behavior of a complex system and the effects of the control parameter upon its behavior.
Via a reasoning procedure termed qualitative bifurcation analysis, ISAAC uses geometric
reasoning to decompose the S/P space into discrete regions, each associated with an
equivalence class of dynamical behavior, to produce aqualitative state/parameter space
(QS/P space) portrait of the system’s dynamics. In this representation, each trajectory is
effectively equivalent, in a well-known sense, to all the other trajectories in the same region,
which allows ISAAC to describe the behavior of a multiregime system in a significantly
simpler way, thereby streamlining the analysis and easing the computational burden.
Finally, ISAAC also exploits the behavioral similarity captured by the QS/P space, together
with continuity along its parameter axis, in order to assist the generate phase.

5. Examples

The representation, reasoning, and input-output techniques described in this paper have
enabled PRET to build models of a variety of engineering problems, ranging from the
simple spring/mass exercise of Fig. 3 to a radio-controlled car in a deployed robotics
system. This section presents three examples. The first two highlight the general execution
of a PRET call and the model generation representations of Section 2.1—especially the
notions of modeling domains and meta-domains. The first of these two is a traditional
automotive engineering task: a vehicle’s suspension. The second, drawn from a water
resource domain, shows how pumping water into an aquifer affects wells that are attached

15Under the rubrics of “experimental design” and “reasoning about action”, respectively.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 171

Fig. 11. A one-degree-of-freedom quarter-vehicle model that includes a shock absorber—a viscous damping
element,B—connected in parallel with a spring,K, and the loading effects of the car,M.

to that aquifer. The third example, a parametrically driven pendulum, highlights PRET’s
reasoning techniques and its input-output modeling facilities.

5.1. Modeling a shock absorber

Hydraulic shock absorbers, common in modern commercial vehicles, are complex
nonlinear devices whose behavior depends upon the amplitude and frequency of the
imposed motion. Accurate mathematical models of this behavior are key to realistic vehicle
simulations and active-suspension controllers, among other things. Shock-absorber models
normally come in two forms: either as a stand-alone device—typically just a connected
spring and damper element—or as part of a “quarter-vehicle model”, where the loading
effects of one quarter of the vehicle are included; see Fig. 11. The effects of different
shock absorbers in one- and two-degree-of-freedom quarter-vehicle models may be found
in [64]; Besigner et al. [10] summarize the behavior of five different damper model variants,
such as “no spring”, “velocity-dependent damping”, or “linear spring”. Note the similarity
to the component-based modeling terminology of Section 2. This is exactly the kind of
expert reasoning that motivated PRET’s domain knowledge framework, and these kinds of
similarities make it easy for engineers to use PRET on real problems.

To illustrate its operation, we will give a brief narrative description of PRET’s actions
as it models a hydraulic shock absorber. As shown in thefind-model call fragment
in Fig. 12, the user initializes PRET in a manner similar to the spring/mass example
of Fig. 3, but with a different domain (linear-mechanics), different hypotheses (a
spring force that obeys a cubic version of Hooke’s law), a drive term that represents a
constant normal force on the suspension, and a noisy time-series measurement of the
deflection, shown graphically in Fig. 13. Thelinear-mechanics domain has three
default components: linear spring, mass, and damping forces. Because these components
are built into the domain, the user need not enter them explicitly in thefind-model call;
PRET’s model generator will automatically use these three hypotheses along with those
specified in the user’shypotheses entry. One of the challenges in this problem is to
construct a minimal model: one that avoids overfitting the noisy data. The specification
concerning the resolution of the state variable<x> plays a key role in this, allowing the
user to explicitly prescribe how closely the model must match the numeric observation.
PRET uses this information to set up the cell size for its geometric reasoning stage,
which automatically filters out smaller fluctuations. In the case of Fig. 13, this means
that the small, high-frequency oscillation about the local mean is disregarded and state



172 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

(find-model
(domain linear-mechanics)
(state-variables (<x> (integral <v>)))
(observations
(numeric (<time> <x>)

((0 1.3) (0.1 1.2) ...))
(hypotheses

(<force> (∗ k (cube (integral <v>)))))
(drive (<force> d))
(specifications
(<x> absolute-resolution 1.2 (0 15))))

Fig. 12. Afind-model call for the shock absorber. The state variable<v> is velocity (i.e.,v = dx/dt , where
x = <x> is the deflection from the equilibrium position). The hypothesis represents a cubic spring force:F = kx3.
By default, thelinear-mechanicsdomain includes linear spring, mass, and damping components, so PRET’s
user need not specify them explicitly. Thenumeric observation is the noisy dotted time series shown in the
following figure.

Fig. 13. Step responses of a hydraulic shock absorber (dotted) an unsuccessful candidate model with a linear
spring (dashed) and PRET’s final result, which incorporates a cubic spring (solid). The deflection sensor is quite
noisy; part of PRET’s task is to avoid overfitting this sensor trace.

variable<x> is judged to be undergoing a damped oscillation to a fixed point. From
these facts, the inference engine described in Section 3 deduces (among other things) that
the order of any linear model must be at least two. As in the spring/mass example of
Section 1, this qualitative information lets PRET immediately rule out the first dozen or so
candidate models. Proceeding to slightly more complex ODEs, PRET generates the model
aẍ + bẋ + cx + d = 0 (wherex = <x>), which is made up of three domain hypotheses16

and the user’s drive hypothesis. None of the qualitative rules in the ODE theory allows
this model to be ruled out, so PRET is forced to use its parameter estimator, numerical
integration, and a point-by-point comparison between this model—the dashed trace in
Fig. 13—and the noisynumeric observation to establish a contradiction and rule out

16linear-mass, which is (<force> (∗ a (deriv <v>))); linear-damping, which is
(<force> (∗ b <v>)); andlinear-spring, which is(<force> (∗ c (integral <v>))).



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 173

this ODE. After discarding a variety of other unsuccessful candidate models by various
means, PRET eventually generates and tests the ODEaẍ + bẋ + cx + kx3+ d = 0. This
model passes all qualitative and quantitative checks, and so is returned as PRET’s output:

... no refutation ...
(model ((= (+ (∗ (const a) (deriv (deriv <x>)))

(∗ (const b) (deriv <x>))
(∗ (const c) <x>)
(∗ (const k) (cube <x>))
(const d)) 0)

((a 1.000) (b 0.500) (c 0.308) (k 0.0245)
(d 1.304))))

The crafter of PRET’s knowledge bases can implement thelinear-mechanics
domain in several ways. The current instantiation uses thelinear-plus meta-domain
and adds several domain-specific components:linear-mass, linear-damping and
linear-spring. These are just the generalized componentslinear-differen-
tiating, linear-proportional and linear-integrating, renamed in a
manner that makes their meaning obvious to someone who would be using thelinear-
mechanics domain. Jargon matching is only a small part of the power of domain
customization, however; as described in Section 2, domain knowledge allows PRET to
selectively sharpen its knowledge in appropriate ways. In this example, because PRET

knows that the system is linear and mechanical, the general componentlinear-
integrating takes on the more-specific meaning associated withlinear-spring—
e.g., the knowledge that mechanical springs often have appreciable mass and internal
friction that cannot be neglected.

Implementing thelinear-mechanics domain using thelinear-plus meta-
domain has another very important advantage for problems like this, which have a few
drive terms and a few nonlinear terms.linear-plus separates components into a linear
and a nonlinear set, as shown in Fig. 14, in order to exploit two fundamental properties of
linear systems:

(1) there are a polynomial number of uniquenth-order linear ODEs [20], and
(2) linear system inputs (drive terms) appear verbatim in the resulting ODE system.

The first of these properties effectively converts an exponential search space to polynomial;
functionally equivalent linear networks reduce to the same Laplace transform transfer
function, which allows PRET to identify and rule out any ODEs that are equivalent to
models that have already failed the test. The second property allows this meta-domain (and
thus any specific domain constructed upon it) to handle a limited number of nonlinear
terms17 by treating them as system inputs. As long as the number of nonlinear hypotheses
remains small, the search space of possible models remains tractable under this assumption.
See [31] for further details.

PRET’s user could also skip thelinear-mechanics domain and use thelinear-
plus meta-domain directly for this problem, simply by specifying a few extra terms in

17Thus the name linear-plus.



174 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

Fig. 14. PRET’s linear-plus meta-domain is designed for systems that are basically linear, but that
incorporate a few nonlinear terms and a few drive terms. Separating the linear and nonlinear/drive parts of the
model reduces an exponential search space to polynomial and streamlines handling of drive terms.

thehypotheses line of thefind-model call (e.g.,(<force> (∗ c (integral
<v>))) and so on). The only difference between doing this and using thelinear-
plus meta-domain with extra components is an increase in PRET’s run time, as it would
no longer be able to use domain knowledge to streamline the generate and test phases.
Indeed, one could even omitall hypotheses, since PRET automatically performs power-
series expansions if it runs out of domain and user hypotheses, but that would increase the
search space and the run time even further. (This is the true “black box” situation.) The best
course of action is to exploit all available domain knowledge to reduce the search space,
and PRET’s layered domain/meta-domain framework is designed to make it easy to do so.

5.2. Modeling a well/aquifer system

Water resource systems are made up of streams, dams, reservoirs, wells, aquifers,
etc. In order to design, build, and/or manage these systems, engineers must model the
relationships between the inputs (e.g., rainfall), the state variables (e.g., reservoir levels),
and the outputs (e.g., the flow to some farmer’s irrigation ditch). To do this in a truly
accurate fashion requires partial differential equations because the physics of fluids
involves multiple independent variables—not just time—and an infinite number of state
variables. Partial differential equations (PDEs) are extremely hard to work with, however,
so the state of the art in the water resource engineering field falls far short of that. Most
existing water resource applications, such as river-dam or well-water management systems,
use rule-based or statistical models. ODE models, which capture the dynamics more
accurately than statistical or rule-based models but are not as difficult to handle as PDEs,
are a good compromise between these two extremes, and the water resource community
has recently begun to take this approach [19,25]. In this section, we use PRET to duplicate
some of these research results and model the effects of sinusoidal pressure fluctuation in an
aquifer on the level of water in a well that penetrates that aquifer, as shown in Fig. 15. This
example is a particularly good demonstration of the power of generalized components: it
shows how GPNs allow PRET to model a variety of systems using the same underlying
representation. This is especially useful when none of PRET’s existing domains exactly
matches a user’s application area. The well/aquifer example also demonstrates how domain
knowledge and the structure inherited from the meta-domain let the model generator build
interesting systems without creating an overwhelming number of models, as well as how
GPNs let PRET model the load effects easily and naturally.

The first step in describing this modeling problem to PRET is to specify a domain.
Because there is no built-in “water resource” domain, the user has to choose (and



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 175

Fig. 15. An idealized representation of an open well penetrating an artesian aquifer. If the pressure in the aquifer
fluctuates, the water level in the well will move in response.

Fig. 16. Thexmission-linemeta-domain allows PRET to use its lumped-element GPN components to model
spatially distributed systems like transmission lines, vibrating strings, and so on. The basic paradigm is an iterative
structure with a variable number of sections, each of which has the same topology—a series elementAi and a
parallel elementBi . The number of sections, each of which models a small piece of the continuum physics, rises
with the precision of the model.

perhaps customize) one of the meta-domains. For this problem, the choice is obvious, as
thexmission-line meta-domain is specifically designed for this kind ofdistributed
physics, which turns up in fluid flows, vibrating strings, gas acoustics, thermal conduction
and diffusion, etc. This meta-domain is designed to serve as a bridge between two very
different paradigms. The GPN components of Section 2.1 represent prototypicallumped
elements, each of which models a single physical component, whereas a system like a
transmission line or a guitar string can be thought of as an infinite number of small
elements. Using the former to model the latter requires an incremental approach. In
particular, one can approximate a spatiotemporally distributed system using an iterative
structure with a large number of identical lumped sections. Fig. 16 shows a diagram of
this: a generalized iterative two-port network withn uniform sections, each of which has
a serial (Ai ) and a parallel (Bi ) element. Each of these elements can contain one or more
GPN components; they may also be “null” (essentially a short for theAi and an open for
theBi ).

The motivation for thexmission-line meta-domain was the basic engineering
treatment of an electrical transmission line, wherein typical electrical parameters, such
as resistance or inductance, are given in per-unit-length form. Note that the topology
of the sections is fixed in this metaphor: all theAi contain the same network of GPN
components, as do all theBi ; coefficient values within the individual elements may vary.
If the user knows the internal structure of the elements, he or she would specify a single
option for each of theAi andBi in the hypotheses argument to thefind-model



176 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

call,18 and the search space is O(n), where n is the number of sections that are
ultimately required to build a successful model. If the internal element structure is known
a priori across a given application area, that information can be used to construct a new
modeling domain. PRET’s viscoelastics domain, for instance, is an instantiation
of the xmission-line meta-domain where theAi are null and theBi are made up
of an integrating and a proportional GPN—which correspond to a linear spring and a
linear dashpot, respectively—connected in series. The second layer of components, which
PRET uses if it needs to expand the domain dynamically, incorporates dashpots and
parallel dashpot/spring combinations as well. Together, these layers allow PRET to model
the same problems as in [21]. If the structure within a section isnot known, the user
would suggest several hypotheses; thexmission-linemeta-domain would then try out
various combinations of those components in theAi andBi , iterating each combination
out to a predetermined depth.19 Although this does give an exponential search space—
O(2dn), if there ared possible components andn required sections—d is almost always
three or less in engineering practice. If the application really demands more than three or
four components, it would be best to build a new application-specific domain, based on
those components and incorporating knowledge about how to efficiently combine them, as
described in Section 2.1.

As in the shock absorber example, PRET’s user can either customize the meta-domain
for the well/aquifer problem or use it directly. In this case, the customization would consist
of renaming the general componentslinear-differentiating,-integrating,
and -proportional to match the standard domain vocabulary; differentiating and
proportional effects, in particular, simulate radial flow in an aquifer, and water mass
is treated as integrating. (These concepts and equivalences are a routine part of a
water-resource practitioner’s textbook knowledge.) The meta-domain could be further
customized based upon knowledge of the aquifer’s forcing function; if the water’s velocity
changes slowly, for instance, inertial effects can normally be ignored, which reduces the
size of the search space. For the purposes of demonstrating how one uses a PRET meta-
domain directly, however, we omit all customization in this example, so thefind-model
call of Fig. 17 simply instantiates thexmission-linemeta-domain.

This call differs from the previous examples in a variety of ways. This meta-domain has
no built-in components; it only provides the template of an iterative network structure.
PRET must therefore rely solely on user-specified hypotheses to build models.20 The
state variables bear domain-independent names like<effort> and<flow>, rather than
domain-specific ones like<voltage> and <force>. The xmission-line meta-
domain uses these hypotheses as the constituents of the serial and parallel elements (Ai
andBi , respectively), dynamically creating instances of each kind of state variable as
Ai/Bi segments are added to the model. Since numeric observations describe specific
state variables (e.g., the numerical observation of<well-flow> in thefind-model

18Doing so requires using an extended version of thefind-model syntax, which is covered elsewhere [34].
19Currently set at five; we are investigating other values, as well as intelligent adaptation of that limit.
20 In other domains, PRET uses power-series expansions if it runs out of built-in and user-supplied hypotheses.

Since the basic paradigm inxmission-line is essentially a spatial expansion, power-series expansions would
be a duplication of effort.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 177

(find-model
(domain xmission-line)
(state-variables (<well-flow> <flow>))
(observations

(not-constant <well-flow>)
(not-constant (deriv <well-flow>))
(numeric (<time> <well-flow> (deriv <well-flow>))

((0 4.0 0.5) (0.1 4.25 0.6) ...)))
(hypotheses

(<effort> (∗ c (integral <flow>)))
(<effort> (∗ l (deriv <flow>)))
(<effort> (∗ r <flow>)))

(drive (<effort> (∗ da (sin (∗ df <time>)))))
...)

Fig. 17. Afind model call fragment for the well/aquifer example of Fig. 15, illustrating how one uses the
xmission-linemeta-domain directly.

Fig. 18. PRET’s model of the well/aquifer system of Fig. 15. The drive,V = da sindf t , simulates a sinusoidal
pressure fluctuation in the aquifer. Note how the GPN components let the load (the well) be incorporated naturally
into the model.

call of Fig. 17), their identifiers are pre-specified in thestate-variables line of
the call. Finally, unlike the shock absorber and spring/mass systems, the well/aquifer
includes anonautonomous drive term: an ODE fragment that has an explicit sinusoidal
time dependence.

As before, PRET automatically searches the space of possible models, using the
xmission-line meta-domain template to build models and the qualitative and
quantitative techniques of Section 3 to test them, until a successful model is found. The first
series of candidate models is based on a network topology where theAi andBi contain
a single integrating component and a single differentiating component, respectively.21

PRET first tries a one-section network of this form, and then adds identical sections to
this network up to five, but none of these models passes the test. In the second series of
candidate models, theAi are integrating GPNs and theBi are proportional GPNs. All
members of this series fail the test as well. After ruling out all models whose series and
parallel elements contain single GPN components, PRET then moves to more complicated

21That is, the first and second hypotheses. All hypotheses are expressed here with respect to<flow> state
variables.



178 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

topologies. The first such series hasAi as a serial network containing a differentiating
and an integrating GPN component andBi as a single proportional component; the third
element of this series, shown in Fig. 18, passes all qualitative and quantitative checks. In
PRET’s internal format, this model is expressed as follows:

(= (+ (∗ (deriv (deriv <i1>)) l1)
(∗ da (sin (∗ df <time>)))
(∗ c1 <i1>) (∗ r1 (deriv <i1>))
(- (∗ r1 (deriv <i2>)))) 0)

(= (+ (∗ (deriv (deriv <i2>)) l2) (∗ r1 (deriv <i2>))
(- (∗ r1 (deriv <i1>))) (∗ c2 <i2>)
(∗ r2 (deriv <i2>))
(- (∗ r2 (deriv <iW>)))) 0)

(= (+ (∗ (deriv (deriv <iW>)) lW) (∗ r2 (deriv <iW>))
(- (∗ r2 (deriv <i2>))) (∗ cW <iW>)
(∗ rW (deriv <iW>))) 0)

A perfect model of a spatiotemporally distributed system, of course, requires an infinite
number of discrete sections, but one can construct approximations using only a few
sections, and the fidelity of the match rises with the number of sections. This dovetails
neatly with PRET’s specifications, which prescribe the required resolution of the
model: The CBM framework simply keeps adding sections until the model matches the
observations.22 In this case, it used twoxmission-line sections to model the aquifer
and one to model the well. This automatic incorporation of the well as an integral part
of the model—the rightmost loop in Fig. 15—is an important feature, as loading effects
play critical roles in engineering analysis and design. The behavior of an audio amplifier,
for example, will change radically if one short-circuits its speaker outputs, and the two-
terminal GPN load model would factor in those effects automatically. Component-based
modeling also facilitates a simple and natural treatment of the drive term, which is attached
directly to the iterative part of the network. With this approach, an actuator itself, with its
various nonlinear and non-ideal properties, is represented directly as part of the network;
its effects automatically become part of the model, just as they do in real systems. Finally,
like linear-plus, thexmission-line meta-domain lets PRET avoid duplication
of effort. Connecting arbitrary components in parallel and series creates an exponential
number of candidate models, many of which are mathematically equivalent (cf., Thévenin
and Norton equivalents, in network theory). Thexmission-line meta-domain avoids
this duplication by first limiting the number of possible component combinations in the
initial network model and then incrementing this structure to a limited depth before
attempting another initial network.

5.3. Modeling a driven pendulum

The driven pendulum introduced in Section 4 is a prototypical example in dynamical
systems and control theory. It is also widely useful in mechanical engineering in general

22This is exactly the notion of an ODE truncation of a PDE, which PRET uses thexmission-line meta-
domain to capture.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 179

(find-model
(domain linear-rotational)
...
(hypotheses

(<force> (∗ a (sin <theta>))))
(drive (<force> (∗ d (sin (∗ alpha <time>)))))
(observations

(numeric (<time> <theta>)
(data-acquisition (eval ∗acq-handle∗) alpha)))

(specifications
(<theta> absolute-resolution 0.0125)
(control-parameter (alpha absolute-resolution 1.5 (6.0 0.0)))))

Fig. 19. Using PRET to model the driven pendulum:<theta> is the bob angle;alpha (the drive frequency) is
the control parameter.

and robotics in particular, as well as in a variety of other fields, and accurate models of
its dynamics are essential to all of these applications. Our experimental setup consists of
a 15 cm aluminum arm (“bob”) rotating on a ball bearing under the influence of gravity,
together with an actuator (a DC motor) that can impart a sinusoidal torque to that bob, and
a sensor (an optical encoder) that measures its angular position. As mentioned before, the
behavior of this device is complex and interesting: for low drive frequencies, it has a single
stable fixed point, but as the drive frequency is raised, the attractor undergoes a series of
bifurcations. In the sensor data, this manifests as interleaved chaotic and periodic regimes.
In this section, we show how PRET uses noisy, incomplete sensor data from this device to
build accurate ODE models for each of these behavioral regimes, and how it unifies those
models into a single ODE.

PRET’s linear-rotational domain—which is based upon thelinear-plus
meta-domain—is ideal for systems like this, so thefind-model call in Fig. 19 begins by
specifying that domain. Recognizing that the domain is rotational and one of the important
forces (gravity) is not, the user then offers a hypothesis that captures the notion of circular-
to-linear projection:F = a sinθ . Furthermore, the device is driven, but thelinear-
rotational domain does not include nonautonomous drive terms, so the user suggests
a parametric forcing term:F = d sinαt . As in the case of the shock absorber example,
PRET will automatically make use of the built-in domain hypotheses; in this case, those
include terms like linear friction and inertia.

Unlike the find-model calls for the other examples in this paper, the user does
not specify any observations directly. Rather, she or he uses an incantation that instructs
ISAAC 23 to gather data directly from the target system, using an actuator that controls
the drive frequencyalpha and a sensor that gathers angle (<theta>) versus time
information. In order to support reasoning about experiments, thespecifications
take on additional roles and meanings in this example; rather than simply prescribing
the accuracy of the desired model, they also convey some of the physical limitations of
the sensors and actuators. In this case, for example, the optical encoder that measures

23The subsystem that embodies the input-output modeling solutions described in Section 4.



180 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

<theta> has a resolution of± 0.7 degrees. The motor that drives the pendulum has a
fixed amplitude; its frequency range and resolution are 0–6 radians per second and 1.5
radians per second, respectively. This information alone, however, is not enough to let
PRET execute experiments automatically. Every sensor and actuator is different—whether
it is digital or analog, voltage- or current-activated, involves frequency or phase, etc.
Because this kind of information is all but impossible to deduce automatically, PRET

requires its user to give a minimal description of the operative sensors and actuators, in
the form of a short SCHEME procedure (in this case called∗acq-handle∗) that the user
defines in the environment from which he or she calls PRET. The function, which is used to
gather data from the target system for specific settings of the parameteralpha, is passed to
PRET in thefind-model call via the keywordeval, which causes the variable∗acq-
handle∗ to be evaluated in the calling environment. In this case,∗acq-handle∗ has
one argument—the control parameteralpha—and it returns a time series<theta> vs.
<time>:

(define ∗acq-handle∗
(let ((length 100) ;;; run 100 seconds for

each alpha
(time-step 0.1) ;;; sample at 10 Hz
(type ’DC-voltage)) ;;; sensor type

(lambda (alpha)
(let ((v-control alpha))

(run-DAQ length time-step type v-control)))))

The functionrun-DAQ, which is part of ISAAC’s knowledge base, manages the data-
acquisition (DAQ) system that communicates with the actuator and sensor. Its first three
arguments specify the length and sample rate of the sensor trace,24 together with the
sensor type. (There are currently four types of sensors—AC-voltage, DC-voltage,
4-wire-resistance, and4-wire-temperature—and four types of actuators:
DC and AC voltage and current sources.)run-DAQ first sends a control voltage (v-
control) out to the physical device via the DAQ system’s digital-to-analog converter;
this voltage is connected to the frequency-control input of the motor that drives the
pendulum base. As instructed by∗acq-handle∗, run-DAQ then uses the DAQ’s
multimeter board to gather a 100-second long time series of the voltage from the bob
angle sensor, measured every tenth of a second. The associated driver function operates
via system calls to the Standard Instrument Control Library (SICL) [50], which contains
high-level procedures that control the data-acquisition hardware. PRET will eventually
incorporate a variety of such driver functions, one for each useful actuator/sensor
combination that is supported by the DAQ.

PRET begins by building an ODE model for the first time series. As before, the model
generator proposes simple models first and more-complicated ones later, and the model

24Typically, the user will set thetime-step of this sensor trace to be equal to the time resolution in the
specifications section of thefind-model call. However, this is not an absolute requirement. Whereas
thetime-step determines the sample rate at which data is gathered, theresolution specifies how closely
the final ODE model must match the data.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 181

tester checks these models individually, always taking advantage of the abstract-reasoning-
first paradigm to discard bad models quickly. The qualitative information distilled out
of the sensor data during the QBA procedure plays a particularly important role in
this process; without it, the rest of PRET would be forced to rely on manipulations of
the low-level data in order to build and test models, which is an extremely expensive
proposition. For example, the first step in the delay-coordinate embedding procedure
estimates the dimension of the system dynamics; this symbolic fact allows the model
tester to immediately rule out all first-order models. Because the formulae that encode
the information returned by the geometric reasoning processes reside at high abstraction
levels, the logic system can preferentially use this kind of abstract information to establish
contradictions between model and observations quickly and cheaply.

Once PRET accepts a model for the initial time series, ISAAC repeats the reconstruc-
tion/classification procedure at the nextalpha value. The∗acq-handle∗ uses the
absolute-resolution range and step specifications in thefind-model call to
increment the control parameteralpha. If the behavior of the resulting time series is
qualitatively the same, ISAAC conjectures that the physical system is in the same regime
of the qualitative state/parameter space. Reasoning from this conjecture, the model gener-
ator proposes the model that it constructed for the previousalpha value. If, however, the
portrait is qualitatively different (e.g., the attractor has undergone a bifurcation), ISAAC as-
sumes that the previously identified model does not hold, and so the model search process
for this particular time series must begin anew. PRET continues looping in this fashion until
all of thealpha values have been investigated. If it identifies different models for adja-
cent regimes, it attempts to unify the two in a pair-wise fashion—by applying the second
model to the first model’s regime and vice versa. Since coefficient values may vary between
neighboring domains even if the same ODE holds in both, this generally requires another
round of parameter estimation on each model. Whichever one is applicable in both regimes
is accepted as the unifying model. Such a model may not, of course, exist; a system may
be governed by completely different physics in different regimes, and thus no single ODE
may be able to account for its behavior. In such a case, the different regime models would
be mutually exclusive and the unification process would be unable to create a single ODE.
If this happens, our solution is to simply return the list of regimes, models, and transitions,
which is exactly the form of a traditional hybrid model [18] of a multi-regime system.

For the driven pendulum, this procedure plays out as follows:
• ISAAC begins its exploration of the system by generating a time series with the drive

frequencyα set to 6.0 radians per second, and its sensor analysis tools identify
the resulting pendulum phase portrait as alimit-cycle response. The model
generator proposes a number of first-order models, which the model tester eliminates
using qualitative and quantitative means. The model generator next proposes a
second-order model using a single built-in domain hypothesis that represents a
proportional relationship between force and angular displacement:θ̈ = a1θ . The
model tester accepts this model with the parameter valuea1=−35.99.
• ISAAC continues its exploration at the next control parameter value (α = 4.5) and

again identifies the time series as alimit-cycle. Since the neighboring phase
portraits are qualitatively similar, ISAAC reasons that the adjacent regime’s model is
a good starting point, and so it signals the model generator accordingly. In this case,



182 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

however, this conjecture is not borne out. Though the phase portraits are qualitatively
similar, the arc of the pendulum arm is much larger at slower drive frequencies. This
quantitative difference actually necessitates aqualitative change in the ODE model.
In particular, a pendulum may be modeled as a simple harmonic oscillator if the angle
is small (θ ≈ sinθ ). At larger angles, however, this approximation no longer holds,
so the simple harmonic oscillator (θ̈ = a1θ ) model from the neighboring regime fails
the test, forcing PRET to begin the model search anew. (This is an example of what
we call an “incorrect” ODE: one whose solutions cannot match the observed time
series forany coefficient values.) PRET continues generating and testing as before,
eventually finding the nonlinear modelθ̈ = a sinθ with a =−36.10. The next step is
to reconcile the two models, applying both of them in both regimes. Sinceθ̈ = a sinθ
subsumes̈θ = a1θ , PRET discards the latter.
• ISAAC continues the QBA procedure by repeating the reconstruction/classifica-

tion procedure atα = 3.0, finds that the pendulum has bifurcated into a new
behavior regime (in this case, chaotic),25 and again restarts the model search. After
generating and testing several models, PRET finds the ODE model̈θ = a2θ̇+a sinθ+
d sinαt , which contains another built-inlinear-rotational domain hypothesis
that relates force and angularvelocity, with coefficient valuesa2 = −1.65, a =
−24.81, d = 20.72, andα = 3.02. (This is actually the globally valid model, but
PRET cannot know this and must treat it as any other.) Note that theα value in this
model is not exactly 3.000. This comes about because PRET’s parameter estimator
adjusts the model coefficients to optimize its fit to the observed time series—an
intentional design feature that lets it ignore any noise that may be present in its
boundary conditions. Lastly, PRET notes that this more-complex model subsumes the
neighboring regime’s model (θ̈ = a sinθ ), and so accepts the former in both regimes;
at the same time, it performs a bisecting search to find the preciseα value for the
boundary between them.
• At the nextalpha value, 1.5, ISAAC identifies the phase portrait as alimit-
cycle. Since this behavior has been observed before, ISAAC has examples from
which to work. In particular, it proposes the most recent model that was valid in a
limit-cycle regime—in this case, the globally valid model. The model tester quickly
accepts̈θ = a2θ̇ +a sinθ +d sinαt for this regime as well, with the coefficient values
a2=−1.66, a =−24.49, d = 20.833, andα = 1.50.
• At the final control parameter value,α = 0.0, ISAAC identifies the phase portrait as

a damped-oscillation. Since PRET has not yet modeled any such behavior,
ISAAC has no prior model to suggest, and the model generator must start anew. After
rejecting a few models, the model tester acceptsθ̈ = a2θ̇ + a sinθ with a2 =−1.59
anda =−24.38. A final unification step accepts the globally valid for this regime as
well.

25This algorithm may miss bifurcations altogether if two or more of them occurbetween parameter slices,
canceling out each others’ effects. It is, however, a good compromise; bifurcations represent deep changes in
the dynamics, and each one leaves a highly individual signature in the behavior—signatures that are unlikely to
cancel out.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 183

Table 3
Models of the driven pendulum in different behavioral regimes

Drive ODE Description

Frequency

None θ̈ (t)= a2θ̇ (t)+ a sinθ(t) Damped oscillator

Low θ̈ (t)= a2θ̇ (t)+ a sinθ(t)+ d1 sinαt Complex oscillator

Medium θ̈ (t)= a2θ̇ (t)+ a sinθ(t)+ d1 sinαt Chaotic behavior

High θ̈ (t)= a sinθ(t) Sinusoidal oscillator

Very High θ̈ (t)= a1θ(t) Small angle (linear) model

In the absence of unification, PRET would return different ODE models, listed in Table 3,
for the five different regimes that ISAAC identifies in this system. Because it interleaves the
unification process with the model-building process, however, PRET is able to unify these
models in a straightforward and efficient manner. Even more important, this interleaving
can vastly reduce the complexity of the generate phase. One problem with the pair-wise
unification procedure, however, is that it can fail to unify a set of models even if it includes
a single globally valid one. For example, assume model “A” is discovered first, followed by
a different model “B” and that these two models cannot be unified. If a third and globally
unifying model “C” is found next, the pair-wise procedure would not correctly unify the
three models into one. A better unification procedure that solves the pair-wise deficiency
would be to apply all valid models to every time series. We choose not to do this because it
is expensive—O(n2), wheren is the number of time series—and not absolutely necessary;
practicing engineers are quite capable of deciding which models in a list subsume one
another if PRET misses a few equivalences.

6. Conclusion

PRET is designed to produce the type of formal engineering models that a human
expert would create—quickly and automatically. Unlike existing system identification
tools, PRET is not just a fancy parameter estimator; rather, it uses sophisticated knowledge
representation and reasoning techniques to automate the structural identification phase of
model building as well. Unlike existing AI tools, PRET takes anactive approach to the
task of modeling complex, nonlinear systems, using techniques drawn from engineering,
dynamical systems, and control theory to explore their behavior directly, via sensors
and actuators. Unlike any existing software tools, PRET works with high-dimensional,
nonlinear, grey-box systems: the kinds of hard problems with which engineers are faced
on a daily basis.

The challenges involved in automating nonlinear system identification are significant,
especially because PRET is designed to be easily extensible to any problem domain
that admits ordinary differential equations. The control-theoretic issues involved in
reasoning about nonlinear dynamical systems—particularly those involving the planning
and execution of experiments—routinely stymie human experts. PRET’s solution is based



184 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

on two paradigms: generate-and-test and input/output modeling. The generate phase rests
on a flexible, powerful representation—the generalized physical network—and a layered
hierarchy of knowledge representations that we termdomains and meta-domains. This
framework lets PRET effectively model systems in a wide variety of application areas and
also adapt smoothly to different levels of domain knowledge. The test phase is based on
a first-order logic inference system that uses a variety of heterogeneous reasoning modes
to check models against observations. This inference system orchestrates the selection,
invocation, and interaction of these reasoning modes using declaratively represented
knowledge about dynamical systems, together with knowledge abouthow to reason about
dynamical systems, in order to test candidate models as cheaply as possible. Input/output
techniques—automatic planning, execution, and interpretation of experiments—make the
modeling process interactive. This is a particularly difficult problem. In practice, one
can rarely measure (or evenknow) all the state variables of a system; usually, one has
access to imprecise, noisy sensors attached to some subset of its outputs. PRET works with
imprecision by representing and reasoning with it explicitly, deals with noise by QR-guided
filtering in its nonlinear parameter estimation reasoner, reconstructs any unmeasured
dynamics using delay-coordinate embedding, and identifies different behavioral regimes
and the connection between inputs and outputs using cell dynamics, bifurcation analysis,
and a new representation called the qualitative state/parameter space.

Theoretically, PRET can modelany system that admits an ODE model—even in the
most severe black-box situation, where it knows nothing whatsoever about that system.26

Because thexmission-line meta-domain allows PRET to use its lumped-element
GPN components to model spatially distributed systems, it can even model systems that
technically require PDE models. In practice, however, the size of the associated search
space and the available computer power limit PRET’s range. The representation and
reasoning tactics described in this paper mitigate this by intelligently streamlining the
model-building and -testing processes. Thanks to these tactics, PRET has been able to
successfully construct models of a dozen or so textbook problems (Rössler, Lorenz, simple
pendulum, pendulum on a spring, etc.; see [16,17,34]), as well as several interesting and
difficult real-world examples, such as the well, shock absorber, and driven pendulum in
the previous section and a commercial radio-controlled car, which is covered in [16].
These examples are representative of wide classes of dynamical systems, both linear and
nonlinear. PRET’s model of the radio-controlled car was particularly interesting; it not only
fit the experimental data, but actually enabled the project analysts to identify what was
wrong with their mental models of the system. Specifically, PRET’s model matched the
observationsbut not their intuition, and the disparities led them to understand the system
dynamics better.

This anecdote brings out an important point: PRET is intended to be an engineer’s tool,
and that goal dictated a specific set of design choices. From an engineering standpoint, a
successful model balances accuracy and parsimony. Accordingly, PRET’s goal is not to in-
fer physics that the user left implicit, but rather to construct the simplest model that matches
the observed behavior to within the predefinedspecifications. Because evaluation

26This is due largely to its Taylor-series model-generation facilities and the lowest-level layer of model-testing
tools in Table 2.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 185

criteria are always domain-specific, we believe that modeling tools should let their domain-
expert users dictate them, and not simply build in an arbitrary set of thresholds and percent-
ages. The notion of aminimal model that is tightly (some might say myopically) guided by
its user’s specifications represents a very different philosophy from traditional AI work in
this area. Unlike some scientific discovery systems, PRET makes no attempt to exceed the
range and resolution specifications that are prescribed by its user: a loosespecifica-
tion for a particular state variable, for instance, is taken as an explicit statement that an
exact fit of that state variable is not important to the user, so PRET will not add terms to the
ODE in order to model small fluctuations in that variable. Conversely, a single out-of-range
data point will cause a candidate model to fail PRET’s test. These are not unwelcome side
effects of the finite resolution; they are intentional and useful by-products of the abstrac-
tion level of the modeling process. A single outlying data point may appear benign if one
reasons only about variances and means, but engineers care deeply about such single-point
failures (such as the temperature dependence of O-ring behavior in space shuttle boosters),
and a tool designed to support such reasoning must reflect those constraints.

Achieving model parsimony and accuracy in the face of incomplete, heterogeneous
knowledge and an exponential search space is a nontrivial problem. Automatic planning,
execution, and interpretation of experiments can aid in its solution, but the associated
implementation issues are nontrivial. Manipulating actuators and sensors in order to
augment a model-builder’s knowledge in useful ways is made difficult not only by the
control-theoretic issues that are buried in the physics, but also by the meta-knowledge
constraints that are inherent in the problem requirements. Corroborating, verifying, and
even filling in a human expert’s knowledge is a worthwhile goal, but it can conflict
with model minimality. Nonetheless, automating the input/output modeling process is an
important step for autonomous situations, for nonexpert users, etc., so sensible ways around
this conundrum are one of the current foci of our research.

Acknowledgements

Apollo Hogan, Brian LaMacchia, Abbie O’Gallagher, Janet Rogers, Ray Spiteri, and
Tom Wrensch contributed code and/or ideas to PRET.

References

[1] H. Abarbanel, Analysis of Observed Chaotic Data, Springer, Berlin, 1995.
[2] H. Abelson, The bifurcation interpreter: A step towards the automatic analysis of dynamical systems,

Internat. J. Comput. Math. Appl. 20 (1990) 13.
[3] S. Addanki, R. Cremonini, J.S. Penberthy, Graphs of models, Artificial Intelligence 51 (1991) 145–178.
[4] J. Amsterdam, Automated qualitative modeling of dynamic physical systems, Ph.D. Thesis, MIT,

Cambridge, MA, 1992.
[5] K. Astrom, P. Eykhoff, System identification—A survey, Automatica 7 (1971) 123–167.
[6] A. Barrett, D. Christianson, M. Friedman, C. Kwok, K. Golden, S. Penberthy, Y. Sun, D. Weld,

UCPOP User’s Manual (version 4.0), Technical Report 93-09-06d, Department of Computer Science and
Engineering, University of Washington, Seattle, WA, 1995.

[7] C. Beckstein, R. Stolle, G. Tobermann, Meta-programming for generalized Horn clause logic, in: Proc. 5th
International Workshop on Metaprogramming, Metareasoning in Logic (META-96), Bonn, Germany, 1996,
pp. 27–42.



186 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

[8] C. Beckstein, G. Tobermann, Evolutionary logic programming with RISC, in: Proc. 4th International
Workshop on Logic Programming Environments, Washington, DC, Technical Report TR 92-143, Center
for Automation and Intelligent Systems Research at Case Western Reserve University, Cleveland, OH,
November 1992, pp. 16–21.

[9] C. Beckstein, G. Tobermann, Algorithmic debugging and hypothetical reasoning, J. Automat. Software
Engineering 4 (1997) 151–178.

[10] F. Besinger, D. Cebon, D. Cole, Damper models for heavy vehicle ride dynamics, Vehicle System
Dynamics 24 (1997) 35–64.

[11] P. Boggs, R. Byrd, J. Rogers, R. Schnabel, User’s reference guide forODRPACK—Software for weighted
orthogonal distance regression, Technical Report 4103, National Institute of Standards and Technology,
Gaithersburg, MD, 20899, 1991.

[12] P. Boggs, R. Byrd, R. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance
regression, SIAM J. Sci. Statist. Comput. 8 (6) (1987) 1052–1078.

[13] E. Bradley, Autonomous exploration and control of chaotic systems, Cybernetics and Systems 26 (1995)
299–319.

[14] E. Bradley, Time-series analysis, in: M. Berthold, D. Hand (Eds.), Intelligent Data Analysis: An
Introduction, Springer, Berlin, 2000.

[15] E. Bradley, M. Easley, Reasoning about sensor data for automated system identification, Intelligent Data
Analysis 2 (2) (1998) 123–138.

[16] E. Bradley, A. O’Gallagher, J. Rogers, Global solutions for nonlinear systems using qualitative reasoning,
Ann. Math. Artificial Intelligence 23 (1998) 211–228.

[17] E. Bradley, R. Stolle, Automatic construction of accurate models of physical systems, Ann. Math. Artificial
Intelligence 17 (1996) 1–28.

[18] M. Branicky, V. Borkar, S. Mitter, A unified framework for hybrid control, in: Proc. 33rd IEEE Conference
on Decision & Control, Lake Buena Vista, FL, 1994, pp. 4228–4234.

[19] J. Bredehoeft, H. Cooper, I. Papadopulos, Inertial and storage effects in well-aquifer systems, Water
Resource Research 2 (4) (1966) 697–707.

[20] W. Brogan, Modern Control Theory, 3rd edn., Prentice-Hall, Englewood Cliffs, NJ, 1991.
[21] A. Capelo, L. Ironi, S. Tentoni, Automated mathematical modeling from experimental data: An application

to material science, IEEE Trans. Systems Man Cybernet. 28 (1998) 356–370.
[22] J. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, C. Knoblock, S. Minton, A. Pérez, S. Reilly,

M. Veloso, X. Wang, PRODIGY 4.0: The manual and tutorial, Technical Report CMU-CS-92-150, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1992.

[23] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt, Maple V Language
Reference Manual, Springer, Berlin, 1991.

[24] M. Cherniack, S. Zdonik, Changing the rules: Transformations for rule-based optimizers, in: Proc. ACM
SIGMOD International Conference on Management of Data, Seattle, WA, 1998.

[25] D. Chin, Water-Resource Engineering, Prentice Hall, Englewood Cliffs, NJ, 2000.
[26] R. Davis, Meta-rules: Reasoning about control, Artificial Intelligence 15 (3) (1980) 179–222.
[27] J. de Kleer, An assumption-based TMS, Artificial Intelligence 28 (2) (1986) 127–162.
[28] J. de Kleer, B.C. Williams (Eds.), Artificial Intelligence, Vol. 51, Elsevier Science, Amsterdam, 1991,

Special Volume on Qualitative Reasoning about Physical Systems II.
[29] D. D’Humieres, M. Beasley, B. Huberman, A. Libchaber, Chaotic states and routes to chaos in the forced

pendulum, Phys. Rev. A 26 (1982) 3483–3496.
[30] S. Džeroski, L. Todorovski, Discovering dynamics: From inductive logic programming to machine

discovery, J. Intelligent Inform. Systems 4 (1995) 89–108.
[31] M. Easley, Automating input-output modeling of dynamic physical systems, Ph.D. Thesis, University of

Colorado at Boulder, 2000.
[32] M. Easley, E. Bradley, Generalized physical networks for model building, in: Proc. IJCAI-99, Stockholm,

Sweden, 1999, pp. 1047–1052.
[33] M. Easley, E. Bradley, Reasoning about input-output modeling of dynamical systems, in: Proc. 3rd

International Symposium on Intelligent Data Analysis (IDA-99), Amsterdam, Springer, Berlin, 1999,
pp. 343–355.



E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188 187

[34] M. Easley, E. Bradley, Meta-domains for automated system identification, in: C.H. Dagli, M. Akay,
O.K. Ersoy, Ferná, A. Smith (Eds.), Proc. Smart Engineering System Design (ANNIE 00), ASME Press,
Fairfield, NJ, 2000, pp. 165–170.

[35] J. Everett, K. Forbus, Scaling up logic-based truth maintenance systems via fact garbage collection, in: Proc.
AAAI-96, Portland, OR, 1996, pp. 614–620.

[36] B. Falkenhainer, K. Forbus, Compositional modeling: Finding the right model for the job, Artificial
Intelligence 51 (1991) 95–143.

[37] B. Faltings, E. Gelle, Local consistency for ternary numeric constraints, in: Proc. IJCAI-97, Nagoya, Japan,
1997, pp. 392–397.

[38] B. Faltings, P. Struss (Eds.), Recent Advances in Qualitative Physics, MIT Press, Cambridge, MA, 1992.
[39] K. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85–168.
[40] K. Forbus, Interpreting observations of physical systems, IEEE Trans. Systems Man Cybernet. 17 (3) (1987)

350–359.
[41] K. Forbus, Qualitative reasoning, in: A. Tucker (Ed.), CRC Computer Science and Engineering Handbook,

CRC Press, Boca Raton, FL, 1997.
[42] J. Forrester, World Dynamics, Wright Allen Press, New York, 1971.
[43] D.M. Gabbay, M.J. Sergot, Negation as inconsistency I, J. Logic Programming 3 (1) (1986) 1–36.
[44] H. Gallaire, C. Lasserre, Controlling knowledge deduction in a declarative approach, in: Proc. IJCAI-79,

Tokyo, Japan, 1979, pp. S–1–S–6.
[45] H. Gallaire, C. Lasserre, Metalevel control for logic programs, in: K.L. Clark, S.A. Tärnlund (Eds.), Logic

Programming, Academic Press, London, 1982, pp. 173–185.
[46] H. Goldstein, Classical Mechanics, Addison Wesley, Reading, MA, 1980.
[47] B. Grosof, Courteous logic programs: Prioritized conflict handling for rules, Technical Report RC 20836,

IBM Research, 1997.
[48] J. Halling (Ed.), Principles of Tribology, MacMillan, 1978.
[49] B. Hannon, M. Ruth, Dynamic Modeling, Springer, New York, 1995.
[50] Hewlett-Packard, Standard Instrument Control Library Reference Manual, 1996.
[51] P. Hill, J. Lloyd, The Gödel Programming Language, MIT Press, Cambridge, MA, 1994.
[52] A. Hogan, R. Stolle, E. Bradley, Putting declarative meta control to work. Technical Report CU-CS-856-98,

University of Colorado at Boulder, 1998.
[53] D. Hong, S. Velinsky, X. Feng, Verification of a wheeled mobile robot dynamic model and control

ramifications, Dynamic Systems, Measurement, and Control 131 (1) (1999) 58–63.
[54] R. Horst, P. Pardalos, N. Thoai, Introduction to Global Optimization, Nonconvex Optimization and its

Applications, Vol. 3, Kluwer, Dordrecht, 1987.
[55] C. Hsu, A theory of cell-to-cell mapping dynamical systems, J. Appl. Mech. 47 (1980) 931–939.
[56] C. Hsu, Cell-to-Cell Mapping, Springer, New York, 1987.
[57] K.-M. Huang, J.M. Zytkow, Discovering empirical equations from robot-collected data, in: Z. Ras,

A. Skowron (Eds.), Foundations of Intelligent Systems, Lecture Notes in Computer Science, Vol. 1325,
Springer, Berlin, 1997, pp. 287–297. Proceedings of ISMIS-97, Charlotte, NC, October 1997.

[58] J. Jaffar, M. Maher, Constraint logic programming: A survey, J. Logic Programming 20 (1994) 503–581.
[59] J.-N. Juang, Applied System Identification, Prentice Hall, Englewood Cliffs, NJ, 1994.
[60] D. Karnopp, D. Margolis, R. Rosenberg, System Dynamics: A Unified Approach, 2nd edn., Wiley, New

York, 1990.
[61] B.J. Kuipers, Qualitative simulation, Artificial Intelligence 29 (3) (1986) 289–338.
[62] B.J. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, Addison-

Wesley, Reading, MA, 1992.
[63] P. Langley, H.A. Simon, G.L. Bradshaw, J.M. Zytkow (Eds.), Scientific Discovery: Computational

Explorations of the Creative Process, MIT Press, Cambridge, MA, 1987.
[64] R. Langlois, R. Anderson, Preview control algorithms for the active suspension of an off-road vehicle,

Vehicle System Dynamics 24 (1997) 65–97.
[65] J. LeFèvre, Reactive system dynamics: An extension of forrester’s system dynamics using bond graph-like

notations, in: Bond Graph Modeling and Simulations, ICBGM ’97, Conference Proceedings, Phoenix, AZ,
1997, pp. 149–155.

[66] L. Ljung (Ed.), System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.



188 E. Bradley et al. / Artificial Intelligence 133 (2001) 139–188

[67] J.W. Lloyd, Foundations of Logic Programming, 2nd extended edn., Springer, Berlin, 1987.
[68] L. McCarty, Clausal intuitionistic logic I. Fixed-point semantics, J. Logic Programming 5 (1988) 1–31.
[69] F. Morrison, The Art of Modeling Dynamic Systems, Wiley, New York, 1991.
[70] P. Mosterman, G. Biswas, Formal specifications for hybrid dynamical systems, in: Proc. IJCAI-97, Nagoya,

Japan, 1997.
[71] P.J. Mosterman, G. Biswas, A formal hybrid modeling scheme for handling discontinuities in physical

system models, in: Proc. AAAI-96, Portland, OR, 1996, pp. 985–990.
[72] N. Muscettola, P. Nayak, B. Pell, B. Williams, Remote agent: To boldly go where no AI system has gone

before, Artificial Intelligence 103 (1998) 5–48.
[73] P.P. Nayak, Automated Modeling of Physical Systems, Lecture Notes in Computer Science, Vol. 1003,

Springer, Berlin, 1995. Revised version of Ph.D. Thesis, Stanford University, 1992.
[74] H. Paynter, Analysis and Design of Engineering Systems, MIT Press, Cambridge, MA, 1961.
[75] J. Rees, W. Clinger, The revised3 report on the algorithmic language Scheme, ACM SIGPLAN Notices 21

(1986) 37.
[76] J. Reid, Linear System Fundamentals, McGraw-Hill, New York, 1983.
[77] V. Robins, J. Meiss, E. Bradley, Computing connectedness: An exercise in computational topology,

Nonlinearity 11 (1998) 913–922.
[78] V. Robins, J. Meiss, E. Bradley, Computing connectedness: Disconnectedness and discreteness, Physica

D 139 (2000) 276–300.
[79] R. Sanford, Physical Networks, Prentice-Hall, Englewood Cliffs, NJ, 1965.
[80] T. Sauer, J. Yorke, M. Casdagli, Embedology, J. Statist. Phys. 65 (1991) 579–616.
[81] E.D. Sontag, Mathematical Control Theory, Springer, Berlin, 1998.
[82] L. Sterling, E. Shapiro, The Art of PROLOG, MIT Press, Cambridge, MA, 1986.
[83] R. Stolle, Integrated multimodal reasoning for modeling of physical systems, Ph.D. Thesis, University of

Colorado, 1998. To appear in Lecture Notes in Computer Science, Springer, Berlin.
[84] R. Stolle, E. Bradley, A customized logic paradigm for reasoning about models, in: Y. Iwasaki, A. Farquhar

(Eds.), Proc. 10th International Workshop on Qualitative Reasoning (QR-96), Stanford Sierra Camp, CA,
AAAI Technical Report WS-96-01, 1996.

[85] R. Stolle, E. Bradley, Multimodal reasoning for automatic model construction, in: Proc. AAAI-98, Madison,
WI, 1998, pp. 181–188.

[86] S. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, MA, 1994.
[87] G. Sussman, G. Steele, CONSTRAINTS—A language for expressing almost hierarchical descriptions,

Artificial Intelligence 14 (1980) 1–39.
[88] L. Todorovski, S. Džeroski, Declarative bias in equation discovery, in: Proc. 14th International Conference

on Machine Learning (ICML-97), San Francisco, CA, Morgan Kaufmann, San Mateo, CA, 1997, pp. 376–
384.

[89] J. Top, H. Akkermans, Computational and physical causality, in: Proc. IJACI-91, Sydney, Australia, 1991.
[90] A. Torn, A. Zilinskas, Global Optimization, Lecture Notes in Computer Science, Vol. 350, Springer, Berlin,

1995.
[91] T. Washio, H. Motoda, N. Yuji, Discovering admissible model equations from observed data based on scale-

types and identity constraints, in: Proc. IJCAI-99, Stockholm, Sweden, 1999, pp. 772–779.
[92] D. Weld, J. de Kleer (Eds.), Readings in Qualitative Reasoning about Physical Systems, Morgan Kaufmann,

San Mateo, CA, 1990.
[93] D.S. Weld, Reasoning about model accuracy, Artificial Intelligence 56 (1992) 255–300.
[94] B.C. Williams, W. Millar, Decompositional, model-based learning and its analogy to diagnosis, in: Proc.

AAAI-98, Madison, WI, 1998.
[95] K. Yip, KAM: A System for Intelligently Guiding Numerical Experimentation by Computer, Artificial

Intelligence Series, MIT Press, Cambridge, MA, 1991.
[96] F. Zhao, Computational dynamics: Modeling and visualizing trajectory flows in phase space, Ann. Math.

Artificial Intelligence 8 (1993) 285–300.
[97] J.M. Zytkow, Model construction: Elements of a computational mechanism, in: Proc. Conference on

Creativity, Edinburgh, 1999.


