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Abstract

This paper explores how qualitative information can be used to improve the performance of global

optimization procedures. Speci�cally, we have constructed a nonlinear parameter estimation reasoner

(nper) for �nding parameter values that match an ordinary di�erential equation (ode) model to

observed data. Qualitative reasoning (qr) is used within the nper, for instance, to intelligently

choose starting values for the unknown parameters and to empirically determine when the system

appears to be chaotic. This enables odrpack, the nonlinear least-squares solver that lies at the

heart of this nper, to avoid terminating at local extrema in the regression landscape. odrpack

is uniquely suited to this task because of its eÆciency and stability. The nper's robustness is

demonstrated via a Monte Carlo analysis of simulated examples drawn from across the domain of

dynamics, including systems that are nonlinear, chaotic, and noisy. It is shown to locate solutions for

noisy, incomplete real-world sensor data from radio-controlled cars used in the University of British

Columbia's soccer-playing robot project. The parameter estimation scheme described in this paper

is a component of pret, an implemented computer program that uses a variety of arti�cial intelligence

techniques to automate system identi�cation | the process of inferring an internal ode model from

� Contribution of the National Institute of Standards and Technology and not subject to copyright in the United States.
y Supported by NSF NYI #CCR-9357740, NSF #MIP-9403223, ONR #N00014-96-1-0720, and a Packard Fellowship

in Science and Engineering from the David and Lucile Packard Foundation.
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external observations of a system | a routine and diÆcult problem faced by engineers from various

disciplines.

1 Introduction

System identi�cation (sid), the process of inferring an internal ordinary di�erential equation (ode)

model from external observations of a system, is a routine but diÆcult problem faced by engineers;

consider, for example, building a controller for a radio-controlled (r/c) car with unknown dynamics. In

general, sid proceeds in two interleaved phases: �rst, structural identi�cation, in which the form of the

equation is determined, and then parameter estimation, in which values for the coeÆcients are obtained.

If structural identi�cation produces an incorrect model, no coeÆcient values can make its solutions

match the sensor data. In this event, the structural identi�cation process must be repeated|often using

information about why the previous attempt failed|until the process converges to a solution, as shown

diagrammatically in Figure 1.

In linear physical systems, parameter estimation is well-understood. One textbook approach [1] is

to choose a generic ode system _~x = A~x, fast-Fourier-transform (fft) the sensor data, and use the

characteristics of the resulting impulse response1 to determine the coeÆcients of A. If a solution exists,

this process is relatively straightforward. The diÆculties|and the subtleties employed by practitioners|

arise where noisy or incomplete data are involved, or where eÆciency is an issue. See [1, 2] for some

examples.

In nonlinear systems, sid is vastly more diÆcult. Because linear signal processing methods like ffts

do not apply, we must fall back on regression, and nonlinear regression landscapes typically exhibit local

extrema that can trap numerical methods. Finding the optimal solution in such landscapes is the diÆcult

problem addressed by global optimization research [3, 4]. This paper contributes to this body of work

by presenting a new, highly e�ective global optimization method|constructed using a combination of

qualitative reasoning (qr) and local optimization techniques|for the nonlinear problems encountered

in sid.

The context within which we apply these ideas is the computer program pret [5], which automates

the sid process diagrammed in Figure 1 by building an arti�cial intelligence (ai) layer on top of a set of

traditional sid techniques. This ai layer automates the high-level stages of the identi�cation process that

are normally performed by a human expert. In particular, several forms of qr are combined in a custom

logic system [6, 7] to perform structural identi�cation, assembling a combination of user-speci�ed and

1The natural frequencies, which appear as spikes on the impulse response, yield its eigenvalues; the o�-diagonal elements

can be determined via a residual analysis of the mode shapes between those spikes.
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automatically generated model fragments into nonlinear ode models that �t both the domain physics

and the observations.

pret's nonlinear parameter estimation reasoner (nper), the speci�c topic of this paper, uses qr

techniques to automate the selection of coeÆcient values for these odemodels|the functions represented

by the lower box in Figure 1. The method that lies at the core of the nper is odrpack [8, 9], a robust

nonlinear least-squares solver. Around this core is built a layer of qr techniques that allow pret to

automatically interact with and exploit odrpack's unique and powerful features. This layer can, for

instance, intelligently choose starting values for the unknown coeÆcients, helping odrpack avoid local

extrema. qr can be used to determine cuto� frequencies for �ltering algorithms, so noise can be removed

without disturbing the data's structure. Given qualitative observations, a mainstay of pret, we can

also use qr to interpret odrpack's results on an abstract level|quickly and yet correctly. qr-guided

parameter estimation techniques like these, a collection of which are the topic of the remainder of this

paper, are elements of the type of analysis that an expert human user would perform during an interaction

with odrpack.

The next section introduces pret by way of the real-world example previously mentioned: the r/c

cars used in the University of British Columbia's soccer-playing robot project. These devices cannot

be controlled without an accurate ode model of their dynamics|something that is not part of the

manufacturer's speci�cations sheet. Following this example|which shows both sid phases|we focus

on the parameter estimation phase and describe the inner workings of the nper. To demonstrate its

capabilities, we present a suite of examples, drawn from across the domain of dynamics, including

simulated systems that are nonlinear, chaotic, and noisy, as well as the real-world r/c car example

mentioned above.

2 An Example

pret constructs ode models of target systems, linear or nonlinear, in one variable or many. It is written

in scheme [10] and maple [11]; its implementation is a hybridization of traditional numerical analysis

methods, such as nonlinear regression, with qr and logic programming.

Figure 2 shows how a user instructs pret to build a model of the dynamics of an r/c car. The details

of the syntax are covered elsewhere [12, 5]; brie
y, the bulk of the user's input consists of three types

of information about the target system: hypotheses, observations, and specifications. The �rst

are ode fragments from which pret constructs the model and the third prescribe resolutions to which

that model must adhere. Observations, which play a more-important role in this paper, range from the

purely quantitative to the purely qualitative. The source of the numeric observation in the find-model

call of Figure 2, for example, is a camera above the car, while the qualitative observations were extracted
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from e-mail messages from the project analysts and engineers.

To construct an ode model from this information, pret employs a special logic engine [6] to combine

powerful mathematical formalisms, such as the link between the divergence of an ode (r � f) and the

friction of the system that it describes, with domain-speci�c notions, such as force balances in mechanical

systems, in order to:

1. build ode models from the user's hypotheses;

2. check those models against the observations;

3. manipulate actuators and interpret the resulting sensor data to verify or augment observations of

the system structure [13];

4. and, if the user's input is inadequate, to

� synthesize hypotheses from power-series expansions [14], and

� infer unobserved internal state variables using time-series embedding theory [13].

E�ective qr-guided parameter estimation, the focus of this paper and the goal of the methods described

in the next section, is one element in step 2. In order to show how pret produces the type of qualitative

information used therein, the next few paragraphs give a narrative description of both steps 1 and 2,

the top and bottom boxes in Figure 1, respectively.

pret takes a generate-and-test approach. In the mechanics domain, it uses force balances to assemble

hypotheses into models; in all domains, it examines hypothesis combinations in order of increasing

complexity. In Figure 2, the �rst candidate model is ay = 0. A scheme function called on this ode

establishes the fact (order <y> 0) which expresses that the order of the highest derivative of y in this

model is zero. This fact con
icts with facts inferred from simple geometric reasoning on the numeric

observation|speci�cally, that the <y>-value of the time series in the numeric observation is not constant

at the speci�ed resolution|so this model is ruled out. This demonstrates pret's abstract-reasoning-�rst

approach; only a few steps of inexpensive qualitative reasoning suÆce to quickly discard the model.

pret's structural identi�cation module then continues through a series of hypothesis combinations,

checking each against the observations and discarding most in a similar fashion: for instance, all models

involving the time-dependent term in the third hypothesis con
ict with the autonomous observation; all

whose divergences are non-negative are ruled out by con
ict with the damped observation.

Eventually, pret produces the model:

_x = v cos �

_y = v sin �

_� = � v

_v = �+ 
 v :

(1)
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None of the implemented rules disquali�es this model by purely qualitative means, so pret invokes the

nper. The resulting parameter estimates enable the ode solutions to match the data to within the

prescribed resolution, so this candidate model is returned as the answer. The details of this computation

are the topic of the next section of this paper.

Space requirements force us to omit most of the known hypotheses and observations and much of

the interesting reasoning that proceeds in this example. The point of this presentation is to provide

context for the parameter estimation sections that follow. The actual r/c car find-model call contains

many more hypotheses and qualitative observations, and most of the models that pret constructs from

the former are discarded quickly and easily using qr on the latter.

3 Guiding Nonlinear Parameter Estimation with QR

The next two subsections describe our nper, which takes as input a model with unknown parameters

and some qualitative information derived by the outer layers of pret, and returns parameter values for

the model.

3.1 Adapting the NLS Solver with QR

The method of nonlinear least squares (nls) is commonly applied to the problem of estimating unknown

parameters, say �, of a nonlinear function constructed to model observed values. These methods �nd

parameter values �̂ that minimize the sum of the squared di�erences between the �tted function values

and the observed data. In our analysis, we �t the observed data to a series generated by a numerical

ode integration procedure that takes the de�nition of an ode and produces a time-series approximation

to its solution. We use the nls procedure provided by odrpack [8, 9], an eÆcient and stable trust region

Levenberg-Marquardt code, to estimate the coeÆcients � and initial conditions Y0 that complete the

de�nition of the ode. The ode integration routine we use, ddebdf from the package depac [15], is robust

and suitable for the odes we encounter.

Most nls procedures, including odrpack, solve a sequence of Taylor-series approximations to a non-

linear model. Starting values �0 for the unknowns of the model|in this case, �0 � [�0; Y0
0]|are needed

to form the initial nls search direction. If �0 are too far from the global solution ��, the initial search di-

rection is likely to be poor, and the estimation procedure will be unable to �nd a good solution. Because

pret is designed for both linear and nonlinear ode models, we cannot set �0 by employing the techniques

in [16]. However, we have been able to use qr to construct a robust strategy for obtaining the best

possible solution for a given data set and a speci�c ode model. Our strategy exploits the qualitative

information derived by the outer layers of pret as well as the sophisticated features of odrpack. It also
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makes use of the facts that each variable is a relatively smooth function of time and that the data are

homoscedastic, that is, observed with a constant-variance noise component. We use the �rst property

in �nding the solution, and the second in determining its adequacy.

Our strategy mimics human reasoning: it attempts to discriminate between the true structure in the

data and the overlaid noise. The procedure is based on the following:

� If data are observed without errors (i.e., without noise), then the solution �̂ � [�̂; Ŷ0] 2 <
p can be

obtained by �tting the �rst p observations. This small system is less sensitive to �0 and thus easier

to solve.

� When the data are noisy, the solution �̂ obtained using only the �rst p observations may not provide

good results for the whole series.

An engineer would therefore begin the optimization process by �tting a segment whose length n1 is just

long enough to re
ect the data's structure. Once a solution �̂n1 is found for this smaller problem, the

analyst can set �0n2  �̂n1 and solve for �̂n2 , the solution given the data segment of length n2. In this

way, the engineer steps through the data until �nally �̂n � �̂ is found using the full data set.

Our nper automates the reasoning described in the preceding paragraph. The algorithm consists of

�ve basic steps.

1. Extract smoothed variables|

The data's structure is ascertained by estimating the total number of oscillations, using either a

simple moving average or an fft. This estimate is used to �nd the appropriate cut-o� frequency

for a low-pass �lter that is applied to the observed data to remove the higher frequency noise. The

smoothed data that result from this �ltering operation are e�ectively noise-free.

2. Estimate error variances|

If the magnitudes of the noise in the di�erent state variables are not the same, the solution will

be in
uenced more by the variables with larger errors than by the variables with smaller errors,

even if their relative accuracy is the same. This distortion can be corrected by weighting the

residuals for each variable by the reciprocal of the variance of the errors in this variable. Although

these variances are not known a priori, they can be approximated by ~�2i, the average of the

squared di�erences between the values of the smoothed and raw data for the ith variable. In

addition, the values of ~�2i can be used to construct a threshold value for testing when the estimated

parameters �̂ adequately capture the characteristics of the data. The test statistic is � � �̂2=~�2

and �-threshold � 2, where �̂2 denotes the residual variance of the least squares solution and ~�2

denotes the variance computed using the weighted di�erences between the observed and smoothed

data: the solution is considered adequate if �̂2 is less than twice ~�2.
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3. Fit smoothed variables|

If the data have no error component, it is relatively easy to estimate �̂ using the �rst p points, even

when good starting values �0 are not available. Similarly, it is relatively easy to �nd a good solution

for a small segment of length n1 of the smoothed data, and these results will be approximately the

same as those obtained using all of the raw data. Having solved for �̂sn1 , the solution based on the

�rst n1 observations of the smoothed state variables, we compare � to �-threshold to determine

whether the solution is acceptable. If it is, then we set �0n2  �̂sn1 , and �t the data segment

of length n2. As long as � � �-threshold we double the length of the next data segment. If

� > �-threshold, we reset �0  �̂s + Æ, where Æ is a small perturbation, and then re-�t a slightly

shorter data sequence to try to obtain a better solution. In this case, we use smaller increments

in the data segment length to step through the remainder of the series.

4. Fit raw (un-smoothed) data|

Given good starting values, �0 = �̂s, where �̂s denotes the solution obtained using the smoothed

data as described in step 3, we proceed to �t the raw data. However, even with good starting values

we have found it advantageous to step through the data as described above. A serendipitous bene�t

of this step-through procedure is that it enables us to recognize chaotic models and modify the

parameter adjustment procedure accordingly.

5. Evaluate the �nal solution|

If � � �-threshold, the solution is deemed to be satisfactory; otherwise the model is deemed to be

incompatible with the data. In either case, the value of �, along with �̂ and various other statistics,

are returned to pret.

In the algorithm above, the number of low-frequency oscillations is the qualitative information about

the data's structure that allows us to form the low-pass �lter. The result of the �ltering operation (step

1) enables the accurate construction of ~�2iand provides e�ectively noise-free data, thereby reducing the

diÆculties caused by the lack of good starting values (step 3). Knowledge that the data is homoscedastic

permits us to use ~�2i to form weights that equalize the e�ect of the di�erent variables in the formation

of the least-squares solution. It is also used to form �, which is then used to determine when, and by

how much, the length of the data segment can be increased (steps 3 and 4), and to indicate when there

is evidence of chaotic behavior so that the procedure can be adjusted accordingly. In addition, � is used

to assess the quality of the �nal solution (step 5). Our algorithm combines these qr features with those

embedded in the design of odrpack and depac producing a robust and versatile nper. For example, the

ode routines in depac can detect if a system is sti�, thereby allowing appropriate adaptation.
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3.2 Automating the NLS Solver Call with QR

The qr-adapted nls procedure described in the previous subsection has a variety of facilities and inputs

that an expert can use to tailor and focus the solution process, and pret's knowledge bases and reasoning

systems concern exactly the type of higher-level information that is needed to exploit these hooks.

As shown in the r/c car example, pret performs a variety of qr tasks during its structural identi�ca-

tion phase, involving both the observations and the candidate model. The knowledge derived in this

process can be used to intelligently (a) set up the call to the qr-adapted nls solver and (b) interpret

the results that it returns. The inputs used in step (a) are the starting values �0 and Y0
0, and bounds

on the coeÆcients and state variables; in step (b), the nper reasons about the output statistic �.

A parameter estimation call necessarily involves numerical data for system state variables, so at least

some of the Y0 are always observed. If all of the state variables have been observed, the starting value

problem is easy; pret simply sets Y0
0 to the �rst tuple in the data �le. Any noise in those numbers is

dealt with by the smoothing facilities described in the previous subsection.

A fully observable system, however, is extremely rare in engineering practice; as a rule, many|often,

most|of the state variables either are physically inaccessible or cannot be measured with available sen-

sors. This is control theory's observer problem: inferring the internal state of a system from observations

of its outputs. In linear systems, this is diÆcult; in nonlinear systems, it is an open problem. pret

does not attempt a general solution; it simply automates some of the simpler methods in the controls

literature. Expanding pret's repertoire of qualitative observer theory techniques is a primary thrust in

our current research e�orts [13, 14].

Two forms of reasoning help the nper solve parts of the observer problem, allowing it to compute

values for the qr-adapted nls solver's Y0 arguments: divided di�erencing and symbolic algebra. As a

�rst step in the odrpack call setup, divided di�erences are used recursively to �ll in unknown starting

values Y0
0 for variables that are related by derivative chains to variables with known Y0. For instance,

if velocity were unobserved in the r/c car example, the starting value could be �lled in using �rst-order

forward di�erences on the (known) positions. A less-simplistic di�erencing method would generate better

estimates, but because of the power of the methods described in the previous subsection, we have not

found this to be necessary. Once the di�erence loop has �lled in all possible Y0, pret uses symbolic algebra,

together with qualitative information inferred during the structural identi�cation phase, to solve every

equation in the model for each variable whose Y0 remains unknown. This solve-and-substitute process

is iterated over the set of equations until no further Y0 values can be inferred.

The coeÆcient and state variable bounds arguments passed to the qr-adapted nls solver can also

be leveraged to guide odrpack's solution process. For example, consider a trial model, a second-order

linear ode, being matched against a system whose sensor observations contain an oscillation. The outer
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layers of pret recognize this oscillation using geometric reasoning [13]; the logic system [6, 7] then infers

that the two roots of the model's characteristic polynomial must be complex. Symbolic algebra on

the model coeÆcients produces the corresponding algebraic constraints, which, together with constraint

propagation and whatever numerical information can be inferred from the other observations, are used

to set up the parameter estimator's coeÆcient bounds. State variable bounds are also constructed in

the obvious ways implied by the discretization of qualitative knowledge|for instance, if we know that

a system's state is between two landmarks.

An expert user of odrpack can reason heuristically on the output statistics described in the previous

section in order to decide whether a �t is good or bad. pret automates this process simplistically, using

landmark thresholds whose values are determined by observing human experts. Currently, a model is

deemed adequate if � < 2.

There are many other ways to use available qualitative information to improve the function of the

nls solver. For instance, �ltering destroys various important features of chaotic data; if a system is

observed to be chaotic, pret instructs the parameter estimator to use higher cuto� frequencies on its

�ltering schemes2. Simple geometric frequency-domain reasoning can identify potentially sti� systems3

and guide the choice of numerical ode integrator. These and related ideas are ongoing research topics

in our group.

4 Monte Carlo Study

The task of the nper described above is not simply to �nd the coeÆcients �̂ and initial conditions Ŷ0

that best �t the given data, but also to distinguish between good models and bad models. To be useful,

the procedure must be able to

1. report \success" when the solution represents the data well, and

2. report \failure" otherwise.

It must do this reliably and as quickly as possible in the presence of noise, since sensor measurements

are invariably noisy. In this section we present the results of a series of Monte Carlo experiments that

verify that our nper accomplishes these tasks.

The problems described in this section di�er from the r/c car problem in that the target of the

modeling task is not a sensor-equipped physical system, but rather a simulated time series from a known

2As discussed in the previous section, the qr-adapted nls solver has ways of recognizing chaos and reacting accordingly;

if this knowledge exists in the outer layers of pret, however, it is much more eÆcient to pass it along explicitly and avoid

duplication of e�ort.
3One need only identify the characteristic widely spread peaks on the spectrum.
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ode. These 10 problems, shown in Figure 3, include systems that are linear (e.g., Springs&Masses),

nonlinear (e.g., Spring&Pendulum), and chaotic (e.g., Lorenz). Each of these models is numerically

integrated using the \true" parameter values|��=[��,Y0
�], listed in Figure 3|to produce the \true"

values of the data, Y �. \Observed" sets of data Y r; r = 1; 2; : : :, are then constructed using Y r � Y �+�r,

where �r is the rth array of Gaussian noise generated using a model-speci�c, diagonal covariance matrix.

Figures 4, 5 and 6 show one such realization of observed data for Springs&Masses, Spring&Pendulum,

and Lorenz, respectively. Observed data are shown as gray dots; true values are shown as a black dotted

line; and the solution is shown as a black solid line. The �tted results match the data so well that, at

this level of resolution, the dotted and solid lines are indistinguishable.

We test our nper by applying it to each set of observed data (each of which is similar to the observed

data in Figures 4, 5 and 6) using every model in Figure 3 of appropriate order. Starting values �0 are set

to a vector of ones, and Y0
0 set to the �rst \-tuple" of the smoothed data. We analyze 100 realizations

of the data when supplying the nper the \correct" model, that is, the model used to generate the data.

Ten realizations are examined when the model supplied to the nper is not the one used to generate the

data. There are a total of 1280 individual problems.

Figure 7 presents the results from our study when the model used to generate the data is the model

supplied to the nper. This �gure shows that, when the nper is given the correct model it can �t

the data precisely 99% of the time. Furthermore, the nper was able to correctly distinguish between

adequate and inadequate models every time when given a model other than the one used to generate

the data. In summary, the nper correctly distinguishes between good and bad models 1270 times out

of 1280|a better than 99% success rate.

Our parameter estimation procedure as well as the highly successful results we describe in this section

depend critically upon the qr we apply. The signi�cance of being able to solve such complex nonlinear

systems without user-supplied good starting values cannot be overemphasized.

5 Parameter Estimation for the R/C Car

Figure 8 shows a noisy, real-world data set from sensors on an r/c car used in the University of British

Columbia's soccer-playing robot project. As described earlier, pret uses qr and logic programming to

derive the fourth-order model given by eq. (1) and set up the nper call. The estimated parameters and
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standard deviations4 are

�̂ =

2
664

�

�




3
775 =

2
664

0:0661�0:0021

91:6�2:3

�0:649�0:037

3
775

and

Ŷ0 =

2
66664

x0

y0

�0

v0

3
77775

=

2
66664

10:82�0:24

63:214�0:036

2:84�0:11

-8.1�1:1

3
77775

;

this solution is also shown graphically in Figure 8.

This model, although relatively easy compared to some of those in our Monte Carlo study, bene�ted

signi�cantly from the reasoning we employ to balance noise e�ects between variables. The report returned

to pret is shown in Figure 9; since � = 1:323 is less than the heuristic threshold of 2, these numbers

represent a successful �t.

This solution surprised the University of British Columbia analysts. They knew that the car had

started from rest, and thus that the initial condition v0 should be zero, not �8:1 as estimated. Further

re
ection upon this discrepancy, however, led them to realize that the system dynamics might include

a delay, which was con�rmed with a senior engineer on the project.5 Thus, the nper not only solved

the system, but actually enabled the experts to identify what was wrong with the model fragments they

had suggested.

These results underscore an important point: pret is an engineer's tool, not a scienti�c discovery

system. Its goal is to construct the simplest ode that accounts for the observations and speci�cations

that appear explicitly in the find-model call, not to infer physics that the user left implicit. In this

example, an incorrect model is supplied to the nper because the find-model call omits two pieces of

knowledge|the car starts from rest and the system has a delay. The ode formed by pret thus meets the

explicit requirements, but does not match the expert's intuition. By abusing the (implicit) boundary

conditions, however, the nper is able to �t the observed data within the required tolerances|and

therefore it reports success. Similarly, pret does not attempt to exceed the resolution prescribed by

its user; the lack of a specification for <v> in the last line of Figure 2, for instance, implies that an

exact �t of that state variable is not important to the user. Because of this, pret does not add terms to

the ode in order to model the \bump" in the velocity data in Figure 8. This is not an unwelcome side

4The standard errors are derived under the assumption of a diagonal noise covariance. The validity of this assumption

is questionable given the apparent correlation structure in the residuals for variable �.
5The correspondence was impressive: the �8:1 value that the nper estimates for v0 is within one standard deviation

of the hypothesized seven-cycle delay between command and response.
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e�ect of the �nite resolution; it is an intentional and useful by-product of the abstraction level of the

modeling process.

6 Related Work

This paper discusses work in three broad areas: modeling, parameter estimation, and global optimization.

Modeling research spans many �elds, from the cognitive science-related branch of ai [17] through

design engineering [18], nonlinear dynamics [19], and control theory [20] to the qualitative reasoning

community [21]. The spectrum ranges from models and tools that use a language that is very close to

the physics of the system (e.g., qpt/qpe [22, 23]) to models that use a language that is well suited to

describe the system mathematically (e.g., odes). Like many other projects, for example [24, 25], pret

aims to integrate quantitative and qualitative information; unlike other qr modeling tools, it takes a

practical engineering approach: it works with noisy, incomplete sensor data from partially observable

real-world systems, and its aim is not to \discover" the underlying physics, but rather to �nd the simplest

ode that can account for the observed behavior.

The parameter estimation phase of the modeling process has also received attention in a variety of

�elds. This includes control theory's work on Kalman �ltering [26], an interesting AI tool [27] that uses

dynamics to improve the estimation process, and lately, research by the qr community [16].

pret's nper is most closely related to the work of the qr community. The di�erences, however, are

signi�cant.

� pret and its nper are designed for nonlinear (as well as linear) systems.

� pret uses only general mathematics in its analysis, and does not rely on knowledge speci�c to the

domain in question.

� pret has a very general structural identi�cation procedure that is not restricted to any speci�c form

of equation.

Finally, nonlinear optimization is addressed in a variety of books, including [28], [29], and [30]. Quality

software for solving the unconstrained nls problem is available from packages such as odrpack [8, 9],

minpack [31] and nl2sol [32]. The harder problem of �nding global solutions to nonlinear optimization

problems is being addressed by a number of researchers, including [33]. Two books on this topic are [4]

and [3], the �rst of which is primarily about general continuous nonlinear problems, and the second of

which addresses special cases such as concave problems and network problems.
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7 Conclusion

This paper describes the construction of an nper (nonlinear parameter estimation reasoner) that solves

a global optimization problem by augmenting a local nonlinear least-squares solver with qualitative

information and qualitative reasoning. This reasoner is part of pret, an implemented computer program

that uses a variety of arti�cial intelligence techniques to automate system identi�cation|the process of

inferring an internal ode model from external observations of a system|a routine and diÆcult problem

faced by engineers.

The combination of qualitative reasoning and numerical methods is very powerful; it allows the nper

to �nd the optimal parameter choices to match an ordinary di�erential equation (ode) model to a set

of observed data. In particular,

� qr can e�ectively compensate for a lack of good starting values, thereby enabling the nonlinear

least-squares solver to avoid local extrema in regression landscapes;

� qr enables the nper to automatically determine and adapt to the structure of the data; and �nally

� qr allows pret to quickly and correctly assess when a model is good and when it is bad.

We demonstrate the robustness of our nper through a simulation study that uses problems drawn

from across the domain of dynamics|including systems that are nonlinear, chaotic, and noisy; in these,

our nper is correct more than 99% of the time. Moreover, in a real-world application that involves

modeling a commercial radio-controlled car, we show how pret and the nper construct a model that not

only adequately matches the experimental data, but actually enables the project analysts to identify

what is wrong with their initial ideas about the system. Speci�cally, pret and the nper built a model

that matched the observations but not their intuition, and these disparities led them to understand the

system dynamics better.

We use this anecdote to emphasize that pret is an engineer's tool, not a scienti�c discovery system.

Its goal is not to infer physics that the user left implicit, but rather to construct the simplest model

that accounts for the observed behavior of a high-dimensional black-box system. The power of the

qualitative-reasoning based nper described in this paper is a signi�cant step in this direction.

Acknowledgments: The authors thank Reinhard Stolle, Matt Easley, and Brian LaMacchia for the

code and/or ideas they contributed to this project, and Ray Spiteri for providing the r/c data.
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2
ax + bx  = 0
.

data

IDENTIFICATION

STRUCTURAL

PARAMETER 

ESTIMATION

Y N.
1.24x - 4.38x  = 0

2
success?

INITIALIZATION

Figure 1: The System Identi�cation Process. Structural identi�cation yields the general form of the model;

in parameter estimation, values for the unknown coeÆcients in that model are determined. The program pret

automates this process; the topic of this paper is the parameter estimation box.
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(find-model

(domain mechanics)

(state-variables <r> <theta>)

(point-coordinates <r> <theta>)

(coordinate-transformations ((<x> (* <r> (cos <theta>)))

(<y> (* <r> (sin <theta>)))

(<v> (expt (+ (expt <x> 2) (expt <y> 2)) .5))))

(hypotheses

(<force> (* a <y>))

(<force> (* b (deriv (deriv <y>))))

...

(<force> (* c <time>))

(<force> (* d (deriv <theta>))

(<force> (* e <v>))

(<force> f))

(observations

(constant <theta>)

(autonomous <x>)

...

(damped <x>)

(numeric (<time> <x> <y> <theta> <v>)

(0.017 10.4 63.1 2.4 2) (0.033 10.4 63.3 ...) ...)

(specifications

(resolution <y> absolute 0.1)))

Figure 2: Instructing pret to �nd an ODE model of an r/c car. Angle brackets identify special keywords,

such as state variables or domain properties; a. . . f are unknown constants. The coordinate-transformation

information is necessary because the hypotheses and observations are expressed in di�erent coordinate systems.
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Second Order Models

CircularPendulum

_y1 = y2

_y2 = ��1(�2y2 + �1 sin[y1]) � �3 sin [y1 � t=�4]

�� = [0:9091; 0:1; 0:5; 5:4978]T

Y0
� = [�0:09317; 0:2897]T

DrivenPendulum

_y1 = y2

_y2 = �1�4 cos[�5t] � �2y2 � �3 sin[y1]

�� = [1:0; 2:5; 98:0; 80:0; 4:90:0]T

Y0
� = [0:1; 0:1]T

Glycolytic

_y1 = �2 + 2�4 cos[�5t] � �1y1y
2
2

_y2 = �1y1y
2
2
� �3y2

�� = [1:0; 0:999; 1:0; 0:21; 1:69]T

Y0
� = [1:2; 0:8]T

Pendulum

_y1 = y2

_y2 = ��1 sin[y1] � �2y2

�� = [1:0; 0:1]T

Y0
� = [0:7; 0:0]T

PredatorPrey

_y1 = �2y1 (1 � y1 � y2=(y1 + �1)) � �4y1(sin[�5t] + 1)

_y2 = y2 (y1(�3 + 1)=(y1 + �1) � 1)

�� = [0:5; 5:0; 3:8; 2:08234; 1:5]T

Y0
� = [0:2 1:1]T

Third Order Models

Chua

_y1 = �1(y2 � (�5y1 + 1
2
(�4 � �5)(j1 + y1j � jy1 � 1j)))

_y2 = y1 � y2 + y3

_y3 = �(�2y2 + �3y3)

�� = [9:0; 14:286; 0:0; �0:142857; 0:285714]T

Y0
� = [�0:676; 0:369; 0:792]T

Lorenz

_y1 = �1(y2 � y1)

_y2 = �2y1 � y2 � y1y3

_y3 = y1y2 � �3y3

�� = [16:0; 45:0; 4:0]T

Y0
� = [�0:279; 1:353; 33:164]T

Pentagonal

_y1 = sin[�1y2]� y3 cos[�2y1]

_y2 = y3 sin[�3y1] � cos[�4y2]

_y3 = �5 sin[y1]

�� = [2:4; 0:43; �0:65; �2:43; 0:15]T

Y0
� = [0:0; 0:0; 0:0]T

Fourth Order Models

Springs&Masses

_y1 = y2

_y2 = ��1y1 � �2(y1 � y3)

_y3 = y4

_y4 = �2(y1 � y3) � �3y3

�� = [0:1; 0:2; 0:3]T

Y0
� = [0:1; 0:1; 0:1; 0:1]T

Spring&Pendulum

_y1 = y2

_y2 = y2
4
(�1 + y1) � �2y1 + �3 cos[y3]

_y3 = y4

_y4 = (�3 sin[y3] + 2y2y4)=(��1 � y1)

�� = [0:1; 2:0; 9:8]T

Y0
� = [0:1; 0:1; 0:1; 0:1]T

Figure 3: ODE Models for Monte Carlo Study
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second-order models: Pendulum 100%

DrivenPendulum 100%

CircularPendulum 97%

Glycolytic 100%

PredatorPrey 100%

third-order models: Lorenz 100%

Chua 99%

Pentagonal 95%

fourth-order models: Springs&Masses 100%

Spring&Pendulum 99%

Figure 7: Monte Carlo Results. Table entries show what percentage of the time the nper recognized the correct

model.
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(dataset "rc_cars_00")

(n 121)

(degree 4)

(initial-sum-of-squares 0.00000E+00)

(final-sum-of-squares 8.61396E+02)

(final-variance 7.55610E+00)

(var-flt test 1.323)

(condition-number 2.06503E-03)

(info 1)

(degrees-of-freedom 114)

(parameters

(( 6.6115494E-02 2.0812335E-03 3.1767457E+01 1.9809924E+00)

( 9.1634748E+01 2.2764590E+00 4.0253194E+01 1.9809924E+00)

( -6.4935280E-01 3.7373714E-02 1.7374586E+01 1.9809924E+00)

( 1.0819114E+01 2.3610613E-01 4.5823098E+01 1.9809924E+00)

( 6.3214041E+01 3.6177659E-02 1.7473226E+03 1.9809924E+00)

( 2.8384913E+00 1.0845794E-01 2.6171357E+01 1.9809924E+00)

( -8.0776653E+00 1.0738973E+00 7.5218230E+00 1.9809924E+00)))

Figure 9: nper output �le. var-flt test denotes � � �̂2=~�2, the ratio of the residual variance at the least

squares solution to the residual variance estimated from the smoothed data.
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