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A recurrence plot is a visualization tool for analyzing experimental data. These plots often reveal
correlations in the data that are not easily detected in the original time series. Existing recurrence
plot analysis techniques, which are primarily application oriented and completely quantitative,
require that the time-series data first be embedded in a high-dimensional space, where the
embedding dimensiondE is dictated by the dimensiond of the data set, withdE>2d11. One such
set of recurrence plot analysis tools, recurrence quantification analysis, is particularly useful in
finding locations in the data where the underlying dynamics change. We have found that for certain
low-dimensional systems the same results can be obtained with no embedding. ©1998 American
Institute of Physics.@S1054-1500~98!00604-1#

In general, time-series analysis methods begin with—or
at least include—delay-coordinate embedding, a well-
established means of reconstructing the hidden dynamics
of the system that generated the time series. If the em-
bedding is done correctly, the theorems involved guaran-
tee that certain properties of the original system, known
as dynamical invariants, are preserved in the embedded,
or reconstruction, space. This is an extremely powerful
correspondence, implying that many conclusions drawn
from the reconstruction-space dynamics are also true of
the real, underlying dynamics. There are, of course, some
important caveats; one of the most limiting is that correct
embeddings are not easy to construct. Methods in the
time-series analysis literature use a variety of heuristics
to solve the „significant… problems that are inherent in
this process, and the resulting algorithms are often com-
putationally expensive. Time-series analysis methods that
do not require embedding are, therefore, extremely de-
sirable. We present evidence suggesting that, for low-
dimensional systems, recurrence plots are such a method.
Our conclusion is twofold. First, when using current
recurrence-plot analysis methods on these types of sys-
tems, one need not embed the data. Second, we note that
better methods of recurrence plot analysis are needed,
methods that take into account the structural and quali-
tative aspects of these fascinating plots. This work repre-
sents a first step towards this goal.

I. INTRODUCTION

First introduced in a 1987 paper by Eckmann, Kam-
phorst, and Ruelle,1 the recurrence plot~RP! is an analysis
tool for experimental time-series data. ARP is a two-
dimensional representation of a single trajectory. The time
series spans both ordinate and abscissa, and each point (i , j )

on the plane is shaded according to the distance between the
two corresponding trajectory pointsyi and yj . @In an un-
thresholdedRP ~UTRP!, the pixel lying at (i , j ) is grey-shaded
according to the distance; in a thresholdedRP ~TRP! the pixel
lying at (i , j ) is black if the distance falls within a specified
threshold corridor and white otherwise. For instance, if the
117th point on the trajectory is 14 distance units away from
the 9435th point, the pixel lying at~117, 9435! on theRP will
be plotted with the grey shade that corresponds to a spacing
of 14. @Point ~9435, 117! will be shaded similarly. As origi-
nally conceived, however, RPs are not necessarily
symmetric.1# Figure 1 showsUTRPs generated from two very
different data sets: a time series derived by sampling the
function sint and a time series from the well-known Lorenz
system. The grey shades on these plots range from dark for
very small spacings to light for large interpoint distances, as
shown on the calibration bars in the figure. With this in
mind, the sine-waveRPs are relatively easy to understand;
each of the ‘‘blocks’’ simply represents half a period of the
signal.# @Recall that the shading of the point (w,v) on this
plot reflects the distance between sinw and sinv; if w2v
5p/2, for example, that distance is large.# The lowerRPs in
the figure, generated from a chaotic data set, are far more
complicated, although they too have blocklike structures re-
sembling what might be expected from a periodic signal.
This signal, though, is not periodic, so the repeated structural
elements in the plot beg an explanation.

Recurrence plots are intricate and visually appealing.
They are also useful for finding hidden correlations in highly
complicated data. Moreover, because they make no demands
on the stationarity of a data set,RPs are particularly useful in
the analysis of systems whose dynamics may be changing.
Although the literature in this area is not extensive, the use
of recurrence plots in time-series analysis has become more
common in recent years, particularly in the area of physiol-
ogy. Webber and Zbilut,2 for instance, used recurrence plot
analysis to discern between ‘‘quiet’’ and ‘‘active’’ breathing
in laboratory rats, and Kaluzny and Tarnecki3 usedRPs toa!Electronic mail: lizb@cs.colorado.edu
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study neuronal spike trains in cats. In mathematical prob-
lems, RPs have been used primarily to identify transition
points in nonstationary data sets. Trullaet al.,4 for instance,
analyzed the dynamics of the logistic equation, varying the
driving parameter smoothly and leading the time series be-
tween chaotic and periodic regimes. They concluded thatRP

analysis compares favorably to classical statistical ap-
proaches as a means for analyzing chaotic data, particularly
in the detection of bifurcations. Very recently, Casdagli5

usedRPs to characterize time series generated by dynamical
systems driven by slowly varying external forces.

Our study of recurrence plots has been motivated by the
desire to give meaning to the fascinating structures that they
exhibit. Previous work in this area is primarily application
oriented and completely quantitative. We wish, rather, to ex-

tend, formalize, and systematize recurrence plot analysis in a
meaningful way that is based both in theory and experiment
and that targets both quantitative and qualitative properties.
An important consequence of such a formalization is the
power that it would lend to theRP as an analysis tool. For
example, knowledge of how periodicity and chaos manifest
on RPs and how bifurcations affect the geometry and topol-
ogy of their structure would allow us to use these plots as a
means of determining when a system has, for example,
moved from a limit cycle to a chaotic regime. The work
described in this paper is a first step towards this type of
formalization.

While examining severalRPs of a particular data set, we
noticed that their appearances seemed to remain qualitatively
unchanged with varying embedding dimension. Figure 2 il-

FIG. 1. Recurrence plots:~a! a sine-wave signal and the corresponding recurrence plots and~b! a chaotic signal from the Lorenz system and the corresponding
recurrence plots. The shaded plots to the left, known as unthresholded recurrence plots~UTRPs!, show the distance relationships between all points in the signal
via a gray-scale map. The black and white plots to the right are called thresholded recurrence plots~TRPs! because they highlight only those points that fall
within a prescribed distance range. In~a!, for example, this range of distances, called a threshold corridor, is@0,0.25#; in ~b! the threshold corridor is@0,5.0#.
One can see theTRP patterns in theUTRPs by careful examination of theUTRP calibration bars for the given threshold corridor values.
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lustrates this for data from an angle sensor on a parametri-
cally driven pendulum. WhenRPs of other, unrelated data
sets also exhibited this type of surprising behavior, the ques-
tion naturally arose as to whether the quantitative aspects of
recurrence plots were independent of the embedding dimen-
sion as well. In this paper, we present a suite of numerical
calculations on simulated and experimental data sets that ex-
plore this question. Specifically, we demonstrate that the re-
currence quantification analysis~RQA! of Ref. 4 appears not
to depend on the embedding dimension if the data are rela-
tively low-dimensional (d<3). Analytic justification of this
result is a current focus of our effort and the topic of a
forthcoming paper.

These results suggest that recurrence plots are more
powerful than was previously believed. In all four of the
studies mentioned in the related work paragraph above, for
example, the data were first embedded inRdE for somedE

>1, using the familiar method of delay coordinates.6 Con-
trary to current time-series analysis arcana, however, our evi-
dence suggests thatdE need only be equal to one if the data
are to be analyzed with RQA. This means that no embedding
need be done.

II. RPs AND RECURRENCE QUANTIFICATION
ANALYSIS

In this section, we briefly outline some of the basic fea-
tures ofRPs and describe how one generates aRP of an ex-

perimental data set. The standard first step in this procedure
is to reconstruct the dynamics by embedding the one-
dimensional time series indE-dimensional reconstruction
space using the method of delay coordinates. Given a system
whose topological dimension isd, the sampling of a single
state variable is equivalent to projecting thed-dimensional
phase-space dynamics down onto one axis. Loosely speak-
ing, embedding is akin to ‘‘unfolding’’ those dynamics, al-
beit on different axes. The Takens theorem guarantees that
the reconstructed dynamics, if properly embedded, is equiva-
lent to the dynamics of the true, underlying system in the
sense that their dynamical invariants, such as generalized
dimensions and the Lyapunov spectrum, for example, are
identical.7,8 The process of constructing a correct embedding
is the subject of a large body of literature and numerous
heuristic algorithms and arguments; Abarbanel’s recent text9

gives a good summary of this extremely active field. The
basic problem is to choose two parameters—the delay and
the reconstruction-space dimension—that guarantee anem-
beddingof the data.~Used precisely, the term embedding
refers to a one-to-one map that also preserves tangent direc-
tions.! This process is difficult because, in general, one does
not have prior knowledge ofd’s correct value; all one has is
a one-dimensional time series and from this one would like
to learn as much as possible about the system that generated
the signal. Given a trajectory in the embedded space, finally,

FIG. 2. These four thresholded recurrence plots were generated from a data set gathered from an angle sensor on a parametrically driven pendulum.TRPs
~a!–~d! represent embedding dimensions 1–4, respectively, and all four plots have identical threshold corridors and time delay values. Note the striking
structural similarity: the only apparent variation is a lightening of theTRP with increasing embedding dimension.

863Chaos, Vol. 8, No. 4, 1998 J. S. Iwanski and E. Bradley

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.138.64.221 On: Mon, 11 Apr

2016 19:49:58



one constructs aRP by computing the distance between every
pair of points (yi ,yj ) using an appropriate norm and then
shading each pixel (i , j ) according to that distance.

A. Delay coordinate embedding

To reconstruct the dynamics, one begins with experi-
mental data consisting of a time series:

$x1 ,x2 , . . . ,xN%.

Delay-coordinate reconstruction of the unobserved and pos-
sibly multi-dimensional phase-space dynamics from this
single observablex is governed by two parameters, embed-
ding dimensiondE and time delayt. The resultant trajectory
in RdE is

$y1 ,y2 , . . . ,ym%,

wherem5N2(dE21)t and

yk5~xk ,xk1t ,xk12t , . . . ,xk1~dE21!t!

for k51,2,. . . ,m. Note that usingdE51 merely returns the
original time series; one-dimensional embedding is equiva-
lent to not embedding at all. Proper choice ofdE and t is
critical to this type of phase-space reconstruction and must
therefore be done wisely; only ‘‘correct’’ values of these two
parameters yield embeddings that are guaranteed—by the
Takens Theorem8 and subsequent work by Packardet al.7

and Sauer, Yorke and Casdagli6—to be topologically equiva-
lent to the original~unobserved! phase-space dynamics.

There are numerous methods for choosing the embed-
ding dimension and time delay. The formal requirements on
the latter are somewhat less stringent;t must be long enough
so that the reconstructed dynamics are ‘‘inflated’’ off the
main diagonal of the reconstruction space—with respect to
the floating-point arithmetic system that is involved in the
calculations—but not so long that points in the embedded
trajectory become uncorrelated. The most widely used ap-
proach to estimating such at, which we follow in this paper,
involves analyzing the data’saverage mutual information
function.10 However, beyond heuristics like average mutual
information and loose arguments based on finite-precision
arithmetic, it is difficult to say whether one value of time
delay is ‘‘good’’ or ‘‘bad.’’ The time delay is, of course,
closely tied to the sampling frequency, in thatt can only be
equal to integer multiples of the sampling period. Embedding
dimensiondE is harder to determine and its effects on the
reconstructed dynamics are more obvious and apparent. If
thedE is too small, projection-induced effects will remain in
the reconstructed dynamics, destroying their topological con-
jugacy to the true dynamics. One of the most common meth-
ods for choosingdE ~Ref. 11! is based on the geometry of
projection: one adds embedding dimensions, unfolding the
dynamics and removingfalse near neighbors~points that are
close inm-space but not inm11-space!.

If delay-coordinate embedding has been correctly carried
out, the dynamical invariants of the true and reconstructed
dynamics are identical, so it is natural to assume that theRP

of a reconstructed trajectory bears at least some similarity to
a RP of the true dynamics. Furthermore, one might expect

any properties of the reconstructed trajectory inferred from
this RP to hold for the underlying system as well. This is, in
fact, the rationale behind the standard procedure of embed-
ding the data before constructing a recurrence plot.

B. Constructing the recurrence plot

Recurrence plots are based upon the mutual distances
between points on a trajectory, so the first step in their con-
struction is to choose a normD. For the work presented
here, we use the maximum norm, although in one dimension
the maximum norm is, of course, equivalent to the Euclidean
p-norm. We chose the maximum norm for ease of implemen-
tation and because the maximum distance arising in the re-
currence calculations~the difference between the largest and
smallest measurements in the time series! is independent of
embedding dimensiondE for this particular norm. This
means that we can make direct comparisons betweenRPs
generated using different values ofdE without first having to
rescale the plots. Using the Euclidean two-norm, on the other
hand, interpoint distances increase with embedding dimen-
sion simply because length along a new dimension can only
contribute to the total distance. It is trivial to show that dis-
tanceD(yi ,yj ), as measured by Euclidean p-norm or the
maximum norm, is nondecreasing with respect todE . The
point of using the maximum norm was to mitigate this effect.

Next, we define therecurrence matrix Aas follows:

A~ i , j !5D~yi ,yj !,1< i , j <m,

D~yi ,yj !5 max
1<k<dE

uxi 1~k21!t2xj 1~k21!tu.

We then generate an unthresholded recurrence plot
~UTRP! of the time series by plotting matrixA as a contour
plot ~see Fig. 1!. Since current recurrence-plot analysis meth-
ods, including the methods defined in Ref. 4, focus on
thresholded recurrence plots~TRPs!, the next step is to use
the UTRP to choose athreshold corridor, @d l ,dh#. This is
done by first visually examining theUTRP in order to find
interesting structures, and then using the corresponding val-
ues from theUTRP colorbar as values ford l and dh, thus
isolating these structures.Interesting structures are those
whose appearance is best described as being somewhat
continuous—resembling an underlying skeleton for the rest
of the UTRP—and that persist for different threshold corri-
dors. For simulated data from the Lorenz and Ro¨ssler sys-
tems, for example, this procedure is relatively easy. How-
ever, for other systems in which such structural organization
may not be present we are relegated to the somewhatad hoc
procedure of choosing a threshold corridor that represents
some percentage of the total range of recurrence distances
present in theUTRP. The latter method is what is generally
used in the literature. This choice has sweeping effects on the
RP and some interesting implications for ‘‘false
recurrences:’’5 points that appear close because the embed-
ding dimension is too low and not because of the underlying
dynamics.

The choice of the width of the threshold corridor@d l ,dh#
is critical; too large a corridor results in saturation of the
entire TRP—where every pixel is black—while a corridor
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that is too narrow will not be adequately populated with
points to support the analyses that follow. Besides being
critically important, the selection of threshold corridor is also
difficult to systematize in any sensible way. Solutions in the
literature are unsatisfying; Webber and Zbilut, without com-
ment, prescribe a threshold corridor corresponding to the
lower 10% of the entire distance range present in the corre-
spondingUTRP. Our procedure, which uses corridor bound-
ary values that isolate ‘‘interesting’’ structures in theUTRP, is
also somewhat unsatisfying, and we are working on devel-
oping a better formalization. In the meantime, it is an ad-
equate preliminary approach; for instance, it allowed us to
reproduce the results in Ref. 4, even though that paper did
not specify a threshold corridor.

The absolute position of the threshold corridor is another
important and difficult issue. Our threshold corridor proce-
dure allows us to isolate and examine interesting structures
across the range of recurrence distances—unlike most exist-
ing TRP approaches, which specify threshold corridors of the
form @0,r #. This is an important advantage, as it allows us to
examine recurrence structures comprised of points that are
not false near neighbors~FNNs! in reconstruction space.
~The process of unfolding the attractor—increasing
dE—effectively eliminates FNNs, points that are neighbors
in low-dimensional space due only to projection and not to
the underlying dynamics.11! In this way we attempt to avoid
false recurrences.

Once the threshold corridor has been chosen, it is used to
generate athresholded recurrence matrix B:

B~ i , j !5H 1 if d l<D~yi ,yj !<dh ,

0 otherwise.

Finally, the TRP is generated by darkening all pixels (i , j )
that correspond to nonzero entries in matrixB.

C. Recurrence quantification analysis

Perhaps the key mathematical issue in any attempt to use
RPs to analyze experimental data is that of quantifying the
structure that appears in the plots. Trullaet al.4 have devised
a set of quantifying analyses, collectively called recurrence
quantification analysis~RQA!, to address this problem. The
remainder of this section covers the RQA procedure in de-
tail. We view these techniques as the best-formulated and
most-general approach toRP analysis that has been devel-
oped to date. However, its lumped statistical nature means
that RQA cannot capture many of the spatiotemporal details
of the dynamics. Moreover, it appears that the standard first
step in this procedure—that of embedding the data—may be
unnecessary for low-dimensional systems.

In order to perform RQA on a data set, one first con-
structs aTRP, choosing a threshold corridor@d l ,dh# as de-
scribed in the previous section, and then uses thatTRP to
compute five statistical values. The first of these statistics,
termed % recurrence ~REC!, is simply the percentage of
points on theTRP that are darkened~i.e., those pairs of points
whose spacing falls within the corridor!. This percentage is
precisely what is used to compute the correlation dimension
of a data set—Kaplan and Glass,12 for instance, define cor-

relation dimension as the slope of the linear region in the
S-shaped %recurrence versus corridor width plot. The
RQA, however, stops short of extending the analysis beyond
the simple calculation of the percentage of dark points on the
plot. The second RQA statistic is called %determinism
~DET!; it measures the percentage of recurrent points in aTRP

that are contained in lines parallel to the main diagonal. The
main diagonal itself is excluded from these calculations be-
cause points there are trivially recurrent. Diagonal lines are
included in the analysis if and only if they meet or exceed
some prescribed minimum length threshold. Intuitively,DET

measures how ‘‘organized’’ aTRP is. The third RQA statis-
tic, calledentropy, is closely related toDET. Entropy~ENT! is
calculated by binning the diagonal lines defined in the pre-
vious paragraph according to their lengths and using the fol-
lowing formula:

ENT52 (
k51

N

Pk log Pk ,

whereN is the number of bins andPk is the percentage of all
lines that fall into bink. According to Shannon’s information
theory,13 predictability decreases with increasing entropy, so
one would expect low values ofENT for TRPs of chaotic data
sets, for example. The fourth RQA statistic, termedTREND,
measures how quickly aTRP ‘‘pales’’ away from the main
diagonal. As the name suggests,TREND is intended to detect
nonstationarity in the data. The fifth and final RQA statistic
is calledDIV and is equal to the reciprocal of the longest line
length found in the computation ofDET, or 1/l inemax. Eck-
mann, Kamphorst, and Ruelle claim that line lengths onRPs
are directly related to the inverse of the largest positive
Lyapunov exponent.1 Short l inemax values are therefore in-
dicative of chaotic behavior. In a purely periodic signal—the
opposite extreme—lines tend to be very long, soDIV is very
small.

The ultimate goal of our work is to improve upon exist-
ing methods ofRP analysis. The lumped statistics of RQA
cannot measure much of the qualitative structure of recur-
rence plots; in Fig. 3, for example, we show two structurally
dissimilarRPs that are almost identical from the standpoint of
RQA. Moreover, different parameter choices~minimum line
length, corridor, etc.! can have drastic effects onRP structure
and RQA results. It is our goal to deviseRP analysis methods
in which these types of structural, qualitative differences are
clearly evident and easy to analyze. The ultimate intent of
this line of research is to refineRP analysis techniques to the
point where they can be used to gain greater insight into the
underlying signals from which theRPs were generated.

III. EXPERIMENTS AND RESULTS

One of the more intriguing—and puzzling—
characteristics of recurrence plots of data from low-
dimensional systems is the structural stability that they ex-
hibit with increasing embedding dimension. That is,
qualitative features that are visible inRPs generated using
dE51 often persist inRPs of the same data embedded in
higher dimensions. This may appear counterintuitive, as the
delay-coordinate embedding process is designed to ‘‘un-
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fold’’ the underlying dynamics from the one-dimensional
time series. Following this line of reasoning, it might be
natural to expect that aRP of a formally correct reconstruc-
tion (dE>2d11) would be different fromRPs of partially
unfolded dynamics (dE51, 2, . . . , 2d): that theRP structure
would change with embedding dimension until the ‘‘cor-
rect’’ dE was reached.

However, this is not generally the case, as is clearly
visible in Fig. 2, which shows recurrence plots generated by
chaotic data from a parametrically forced pendulum and how
those plots change with embedding dimension. This particu-
lar system, whose dimension is between 2 and 3, was em-
bedded using the value of time delay as determined by the
first local minimum in the average mutual information func-
tion, per Ref. 10. Note that the qualitative features of all four
TRPs are essentially the same; the major difference is the
gradual fading of theTRPs asdE increases. This is largely
due to the fact that an identical threshold corridor was used
to generate each plot. As noted in Sec. II B, the distance
between any two points on a delay-coordinate reconstructed
trajectory isnondecreasingwith increasingdE . The thresh-
old corridors in theTRPs in Fig. 2 are all of the form@e,r #,
wheree is some small number.~We do not use 0 as the lower
bound in order to avoid trivial recurrences.! The net effect of
a fixed threshold corridor in the face of increasing embed-
ding dimension is that fewer and fewer pairs of points are
recurrent, causing theTRP to fade.

The fact that thequalitative features of theseTRPs are
stable with increasing embedding dimension is highly sug-
gestive. In fact, we have noticed this strong pattern of simi-
larity in all of the low-dimensional (d<3) data sets that we
have examined and are currently attempting to understand
and justify this analytically. Of particular interest are two

aspects of this behavior. First, why does it happen? Recur-
rence plots exposedistance relationships in the data—
relationships that should~perhaps! change as the dynamics
are unfolded by the embedding process. An obvious ansatz is
that since the time series really is only one-dimensional, per-
haps it makes sense that recurrence patterns present in one-
embeddings capture its essential properties. However, such
an explanation seems to violate the whole point of the delay-
coordinate embedding process, wherein themulti-
dimensionalcharacteristics of the dynamics are recovered
from one-dimensional signals. The second goal of our cur-
rent research is to work out a formally justifiable and mean-
ingful way to codify the structural characteristics of recur-
rence plots. Lumped statistical measures, such as those of
RQA, are a good starting point, but these methods cannot
capture the spatiotemporal details of the dynamics. We are
currently investigating various pattern recognition and topo-
logical analysis techniques—perhaps focusing on the un-
stable periodic orbits embedded within the chaotic attractors
in the data sets, a set of invariants that can be used to classify
the attractor14—in order to develop methods that allow sen-
sible and useful structural classification and comparison of
RPs.

The experiments reported in the remainder of this sec-
tion explore these issues in the context ofquantitativemea-
sures of RP structure. Specifically, we investigate how
changes in embedding dimension affect the quantitativeRP

features of two low-dimensional systems, as captured by
three of the five RQA statistics. In the first experiment, we
duplicate the analyses of Ref. 4—wherein RQA was used to
detect dynamical variations in a nonstationary time series
derived from the logistic map, embedded in three
dimensions—and show that the results are identical if one

FIG. 3. RQA results on structurally dissimilarTRPs can be almost identical. These two very differentTRPs, one~a! from the Rössler system and one~b! a
sine-wave signal of varying period, have equal or near-equal values ofREC ~2.1%! andDET ~42.9% for the Ro¨ssler data and 45.8% for the varying-period sine
wave!. Both TRPs were generated from 5000-measurement time series using an embedding dimension of 1 and a minimum line length of 5.

866 Chaos, Vol. 8, No. 4, 1998 J. S. Iwanski and E. Bradley

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.138.64.221 On: Mon, 11 Apr

2016 19:49:58



usesdE51, 2, 3, or 4. In the second experiment, we perform
a similar RQA analysis on the Lorenz system, again obtain-
ing similar results for different embedding dimensions.

A. Applying RQA to the dynamic logistic map time
series

As mentioned in Sec. I,RPs can be used to detect
changes in the dynamics of a system. Trullaet al.,4 for in-
stance, used embedding and RQA to recognize bifurcations
in the dynamics of the logistic equation. In this section, we
duplicate these resultswithout embedding the data.

The well-known logistic map is given by the following
construction,

xn115axn~12xn!

for some choice ofa, which we will call the dynamic param-
eter, and some initial conditionx0 . When studying this well-
known system, one usually fixes the parametera and iterates
the map fromx0 , discarding the first few hundred~or thou-
sand! iterates in order to allow any transient behavior to die
out. This map exhibits a variety of periodic and chaotic be-
haviors for dynamic parameter values betweena52.8 to 4.0,
and the parameter values at which the bifurcations occur are
also well known.

In order to show that RQA is an effective method for
detecting bifurcations, Trullaet al.4 applied their analyses to
a somewhat different logistic map time series—one in which
the transient behavior was not allowed to die out. They be-
gan with dynamic parametera52.8 and initial condition
x050.6. After each iteration, they incrementeda by
0.00 001 up toa54.0, yielding a nonstationary time series
of 120 001 measurements ofx. They then embedded the data
in three-dimensional space witht51, divided the trajectory
into 11 920epochsof 800 points, in which epoch (k11)
began ten points farther along the original time series than
epochk, and calculatedREC and DET for each epoch in the
sequence.@In this formulation, epochk overlaps with the last
790 points of epoch (k21) and with the first 790 points of
epoch (k11).# Their main conclusion was that these two
RQA statistics were better than classical statistical measure-
ments, such as mean and standard deviation, at distinguish-
ing between periodicity and chaos.

We repeated this analysis using identical parameters and
obtained identical results,independent of embedding dimen-
sion. The results fordE53 appear in Fig. 4: part~a! shows
the signal itself, while~b!, ~c!, and~d! give theREC, DET, and
DIV results, respectively, fordE53 and time delayt51. The
vertical lines on the figure indicate bifurcation points, as de-

FIG. 4. Using RQA to detect bifurcations:~a! the dynamic logistic map time series, plotted versus parametera. The vertical lines are drawn at bifurcation
points of the signal. This is not the standard bifurcation diagram of the logistic map; here, the transients were not allowed to die out.~b!, ~c!, and~d! show
REC, DET, andDIV, respectively, plotted versus parametera, using embedding dimensiondE53 and time delayt51. In all three RQA calculations, threshold
corridor was@0,0.0149# and minimum line length was 2. These RQA statistics are clearly effective indicators of the dynamical bifurcations.
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termined by careful examination of the signal. On the whole,
the RQA statistics pick these bifurcation points up very
nicely. Where the bifurcation involves a transition between
periodic and chaotic behavior, there are abrupt changes in all
three statistics; in the direction from periodicity to chaos,
REC and DET increase andDIV decreases~and vice versa!.
Changes in all three statistics also accompany bifurcations
between different types of periodic orbit—e.g., the two-cycle
to four-cycle bifurcation neara53.48. InDIV, these appear
as small spikes, which are somewhat obscured by the scale
and the vertical lines. At the period-doubling bifurcations,
REC drops sharply because points are suddenly not recurrent
with respect to points on the other branch of the orbit. The
DET also drops, although not as sharply; the bifurcation leads
the dynamics intoanotherperiodic regime, where the recur-
rent points are still organized into coherent structures.

In order to explore the role that embedding dimension
plays in RQA, we repeated the same analysis withdifferent
embedding dimensions. The results were virtually identical.
Figure 5 illustrates this, showing the same three RQA statis-
tics for the casesdE51, 2, 3, and 4. The correspondence is
striking: all three RQA statistics pick up the bifurcation
points just as well whendE51 as whendE53, as is apparent
from a vertical comparison of the plots in Fig. 5. There are
some minor shape differences in the plots, but the bifurcation
points are equally distinguishable in all four embeddings.

This implies that the results and claims in Ref. 4 may not
really require embedding the data.

The logistic map is, of course, fundamentally one-
dimensional, so one might naturally expectanydata analysis
results to be independent ofdE . ~Trulla et al., do not give
any justification for having embedded this time series inR3.!
The next logical step in exploring the effects of embedding
dimension on the qualitative and quantitative structure of
recurrence plots was to run a similar experiment on data
from a higher-dimensional system.

B. Applying RQA to the dynamic Lorenz time series

The results in the previous section suggest that RQA
performed on one-embeddings of time-series data is a useful
way to detect bifurcations. In this section, we test this hy-
pothesis further by applying RQA to various embeddings of
time-series data from the Lorenz system. Specifically, we
integrated the Lorenz equations

F ẋ
ẏ
ż
G5Fs~y2x!

rx2y2xz
xy2bz

G ~1!

numerically with fourth-order Runge–Kutta and a timestep
of 0.01, holdings andb fixed ~10 and 8/3, respectively! and
varying r from 28.0 to 268.0, and used thex value as the

FIG. 5. RQA statisticsREC, DET, andDIV computed from the dynamic logistic map data set shown in part~a! of the previous figure. Individual plots are labeled
with * R, * DT, or * DV, where number* indicates the embedding dimension and R, DT, and DV denote RQA statisticsREC, DET, DIV, respectively. The
bifurcation points of the time series are indicated by vertical lines on the DT plots. Note how all three statistics pick up bifurcation points equally well,
regardless of embedding dimension.
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time series. Ther -increment was 0.002 per integration step.
The signal is shown in Fig. 6. For this particular range of
parameter values, the behavior of this system is extremely
well studied; see, for example, Refs. 15 and 16. As in the
case of the logistic map data of Sec. III A, this time series is
somewhat unusual: it includes some amount of transient be-
havior at each step. One could, of course, allow the transient
to die out each timer was incremented before starting to
gather time series samples. However, part of the point of this
technique is to be able to detect bifurcations as they occur, so
an experiment with dynamically changing behavior is an ap-
propriate test case.

The results of RQA on the dynamic Lorenz time series
are shown in Fig. 7. The vertical lines on the DT plots iden-
tify three of the known periodic windows: 99.524,r
,100.795, 145,r ,166, andr .214.4. As in the case of
the logistic map, thedE51, 2, 3, and 4 results are similar.

The DIV is an effective periodic window indicator: all
three of the windows correspond to markedly lower values
for this RQA statistic, as is clearly visible in Fig. 7~1DV!,
~2DV!, ~3DV!, and ~4DV!. The fluctuation of the values at
the beginning of the periodic windows probably stems from
the transient nature of the signal; if the transient is slow, the
dynamics will require some time to reach the attractor. The
flat areas at the very left of theDIV plots—which grow
shorter asdE increases—might also lead one to conclude

~mistakenly! that the signal is periodic forr -values just
greater than 28. We believe that this anomaly is due in part
to the fact that the attractor size changes withr , while we
used a single, fixed threshold corridor for the entire signal.
~This anomaly did not arise in the dynamic logistic map
experiment because the domain of that map is@0,1#, indepen-
dent ofa.! A better experiment might be to adapt the thresh-
old corridor in accordance with attractor size; we are cur-
rently working out how to do so in a sensible manner. At any
rate, it is clear that all fourDIV plots are qualitatively quite
similar.

The recurrence statistic~REC! is a slightly less-effective
bifurcation indicator, but it is still useful, and it too appears
to be independent of embedding dimension. The first peri-
odic window~aroundr 5100! is markedly obvious in Fig. 7
~1R!, ~2R!, ~3R!, and ~4R!. The second periodic window
~betweenr 5145 andr 5166! is indicated by a leveling out
of REC, but the third one does not leave a strong, well-
delineated signature on these plots. Again, this is probably
due in large part to the effects of the change in attractor size
with parameterr . The similarity of the four plots is the main
point we wish to stress here.

TheDET results for the dynamic Lorenz signal are shown
in Fig. 7 ~1DT!, ~2DT!, ~3DT!, and~4DT!. While there is an
obvious similarity between the four plots, the~1DT! results
give a somewhat less-striking indication of the bifurcations

FIG. 6. Dynamic Lorenz time series. This signal was generated from the Lorenz system~1!, with fourth-order Runge–Kutta and a timestep of 0.01, by fixing
s510.0, b58/3, and incrementing the dynamic parameterr from 28.0 to 268.0 by 0.002 at each integration step.
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than the other plots do. However, theDET indicators are still
visible and useful. In particular, the first known periodic win-
dow ~aroundr 5100! is picked up well by all four plots, as
indicated by the spike in the plots atr 5100. ThedE52 and
higherDET plots pick out the second known periodic window
~betweenr 5145 and 166! much better than thedE51 cal-
culations, as indicated by a sharp increase in and leveling out
of the DET values in this range. ThedE51 calculations do
give some indication of this window~i.e., theDET values do
level out in this range!.

Again, these calculations are sensitive to several param-
eters, particularly the threshold corridor and the minimum
line length. In fact, we have found that the minimum line
length parameter can drastically alter the results; when we
used a minimum line length of 2~as opposed to 10 for the
calculations shown here!, the 1DT result was significantly
different from the other three. We have not yet worked out a
good way to understand or work around these effects; it is
important to be careful when choosing parameters for RQA
and to run experiments using several different values.

The obvious next step, on which we are currently work-
ing, is to perform RQA analyses on dynamic data sets from
systems whose known dimension is greater than three. Simi-
lar results on such a data set would further strengthen our
hypothesis that in order to perform RQA on a data set one
neednot first perform any delay-coordinate embedding.

IV. SUMMARY

The recurrence plot, a two-dimensional representation of
a scalar time series that brings out recurrences in a very
natural way, has several features that make it a uniquely
powerful time-series analysis technique. It has previously
been established thatRPs do not require data sets to be sta-
tionary. In this paper, we present evidence that recurrence
plots of data from relatively low-dimensional (d<3) sys-
tems appear to be, for practical purposes, largely indepen-
dent of embedding dimension. Specifically, we have demon-
strated that the recurrence quantification analysis~RQA! of
Trulla et al.,4 a statistical, quantitativeRP analysis method,
does not require that data first be embedded. That is, for the
purpose of finding bifurcation points in the data sets exam-
ined here,dE51 is adequate for computing RQA statistics.
We showed this by repeating the numerical experiments re-
ported in Ref. 4, verifying that RQA statistics can detect
bifurcations in a dynamically varying logistic-map time se-
ries, and then we demonstrated that those results do not ac-
tually depend on embedding dimension. We then extended
this analysis to the Lorenz system, reinforcing the hypothesis
that dE51 RQA results are sufficient and that one need not
embed time-series data before performing RQA.

Qualitativefeatures ofRPs also appear to remain largely
unchanged with varying embedding dimension. TheRPs of

FIG. 7. RQA statisticsREC, DET, andDIV computed from the dynamic Lorenz data set shown in the previous figure. Individual plots are labeled with* R, * DT,
or * DV, where number* indicates the embedding dimension and R, DT, and DV denote RQA statisticsREC, DET, DIV, respectively. Time delay used was
t50.1 ~10 sample intervals 0.01 each!, following Ref. 10. Note how all three statistics pick up bifurcation points equally well,regardless of embedding
dimension.
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experimental data from a driven pendulum, for instance, ex-
hibit only a slight lightening with increasing embedding
dimension—a secondary effect of the norms involved. The
ultimate goal of this line of research is to understand this
invariance ofRP structure and work out useful, formalized
analysis methods that can be used to study that structure.
Purely quantitative analyses like RQA are a good first step
along this path, but because of their lumped statistical nature,
they cannot capture the details of the spatiotemporal dynam-
ics of a time series. The structural analysis tools that we hope
to develop, which will be based in theory and verified in
experiment, will allow one to systematically and reliably
classify the qualitative structure of these intriguing plots. In
particular, we are focusing on methods that exploit pattern
recognition techniques to identify and classify the topologi-
cal features ofRPs. A useful focus for such methods is the set
of unstable periodic orbits~UPOs! embedded within a cha-
otic attractor, a set of dynamical invariants that can be used
to classify such an attractor.14 Preliminary results suggest
that the set of UPOs does indeed form a basis for the gross
structure~the ‘‘skeleton’’! of the recurrence plot of a chaotic
attractor.

There are a variety of other rich and compelling research
directions that stem from this work. The first and most obvi-
ous next step, currently underway in our group, is to test the
‘‘ RPs are independent ofdE’’ hypothesis on higher-
dimensional systems, such as the Mackey–Glass delay-
differential equations. It would also be useful and interesting
to run similar experiments and comparisons onphysicaldata
from systems~e.g., biological or physiological! that are
thought to be nonstationary and high dimensional. The effi-
cacy of any time-series analysis tool, including recurrence
plots, depends upon the sampling frequency. The specific
ways in which sampling rate affects the qualitative and quan-
titative nature of aRP have yet to be explored.

Almost all of the discussion in this paper concerns the
embedding dimensiondE ; very little focuses on the delayt.
The reason for this is that the latter is easier to deal with: the
requirements ont for a correct embedding are generally con-
sidered to be less stringent than those ondE , and the effects
of changing delay on the reconstructed dynamics are easier
to understand. In theory, that is, for an infinite amount of
noise-free data, anyt.0 is adequate.8 In practice, however,
finite data and uncertain noise content, combined with finite-
precision arithmetic, requires that the delay be large enough
so that the reconstructed dynamics do not appear~with re-
spect to machinee! to have been collapsed onto a diagonal
line. In the work described here, we attempt to avoid false
recurrences and mitigate other numerical effects of thin-band
reconstructions by choosing both threshold corridors and
time delays intelligently. In particular, we use the average
mutual information heuristic of Fraser and Swinney10 to es-
timatet for the pendulum data. Estimation oft for dynamic
data sets like those described in Secs. III A and B, however,
is problematic; because they are nonstationary, the standard
t-estimation methods do not apply. For the logistic map data
set, we chose the value used in Ref. 4 (t51) because the
goal was to duplicate and then extend those results. In the

case of the Lorenz data set, we used several different values
of time delay and compared the results, obtaining similar
values for all, and then chose one (t50.1) in the middle of
the range to use for the analyses and plots in this paper.
Finally, recall that one-embeddings do not depend in any
way upont, so the fact that thedE51 RQA results are good
bifurcation indicators strongly supports our main hypothesis.

The evidence presented in this paper to support the hy-
pothesis that aspects ofRP structure are independent of em-
bedding dimension is highly suggestive, but certainly not
definitive, and further verification and study are desperately
needed. The motivation is obvious; it is not only interesting
but also important to determine when, why, and how
recurrence-plot analysis can avoid the considerable difficul-
ties and often-hazy heuristics that inform the delay-
coordinate embedding process. Of course, the difficulties that
are inherent to recurrence-plot analysis itself will remain, but
the overall data analysis process will have been simplified
significantly.
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