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Recurrence plots of experimental data: To embed or not to embed?
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A recurrence plot is a visualization tool for analyzing experimental data. These plots often reveal
correlations in the data that are not easily detected in the original time series. Existing recurrence
plot analysis techniques, which are primarily application oriented and completely quantitative,
require that the time-series data first be embedded in a high-dimensional space, where the
embedding dimensiodg is dictated by the dimensiath of the data set, witldg=2d+ 1. One such

set of recurrence plot analysis tools, recurrence quantification analysis, is particularly useful in
finding locations in the data where the underlying dynamics change. We have found that for certain

low-dimensional systems the same results can be obtained with no embeddid@98cAmerican

Institute of Physicg.S1054-150(08)00604-1

In general, time-series analysis methods begin with—or
at least include—delay-coordinate embedding, a well-
established means of reconstructing the hidden dynamics
of the system that generated the time series. If the em-
bedding is done correctly, the theorems involved guaran-
tee that certain properties of the original system, known
as dynamical invariants, are preserved in the embedded,
or reconstruction, space. This is an extremely powerful
correspondence, implying that many conclusions drawn
from the reconstruction-space dynamics are also true of
the real, underlying dynamics. There are, of course, some
important caveats; one of the most limiting is that correct
embeddings are not easy to construct. Methods in the
time-series analysis literature use a variety of heuristics
to solve the (significant) problems that are inherent in
this process, and the resulting algorithms are often com-
putationally expensive. Time-series analysis methods that
do not require embedding are, therefore, extremely de-
sirable. We present evidence suggesting that, for low-
dimensional systems, recurrence plots are such a method.
Our conclusion is twofold. First, when using current
recurrence-plot analysis methods on these types of sys-
tems, one need not embed the data. Second, we note that
better methods of recurrence plot analysis are needed,
methods that take into account the structural and quali-
tative aspects of these fascinating plots. This work repre-
sents a first step towards this goal.

I. INTRODUCTION

First introduced in a 1987 paper by Eckmann, Kam-
phorst, and Ruellé,the recurrence plotrRP) is an analysis
tool for experimental time-series data. AP is a two-

on the plane is shaded according to the distance between the
two corresponding trajectory pointg andy;. [In an un-
thresholdedkp (UTRP), the pixel lying at (,]) is grey-shaded
according to the distance; in a thresholdged TRP) the pixel

lying at (i,j) is black if the distance falls within a specified
threshold corridor and white otherwise. For instance, if the
117th point on the trajectory is 14 distance units away from
the 9435th point, the pixel lying @117, 943% on therp will

be plotted with the grey shade that corresponds to a spacing
of 14.[Point (9435, 117 will be shaded similarly. As origi-
nally conceived, however,RPs are not necessarily
symmetrict] Figure 1 showsJTRPs generated from two very
different data sets: a time series derived by sampling the
function sint and a time series from the well-known Lorenz
system. The grey shades on these plots range from dark for
very small spacings to light for large interpoint distances, as
shown on the calibration bars in the figure. With this in
mind, the sine-waverps are relatively easy to understand;
each of the “blocks” simply represents half a period of the
signal] [Recall that the shading of the pointv(v) on this

plot reflects the distance between sirand sinv; if w—uv
=x/2, for example, that distance is lar§@he lowerrps in

the figure, generated from a chaotic data set, are far more
complicated, although they too have blocklike structures re-
sembling what might be expected from a periodic signal.
This signal, though, is not periodic, so the repeated structural
elements in the plot beg an explanation.

Recurrence plots are intricate and visually appealing.
They are also useful for finding hidden correlations in highly
complicated data. Moreover, because they make no demands
on the stationarity of a data s&rs are particularly useful in
the analysis of systems whose dynamics may be changing.
Although the literature in this area is not extensive, the use
of recurrence plots in time-series analysis has become more

dimensional representation of a single trajectory. The tim&,mmon in recent years, particularly in the area of physiol-

series spans both ordinate and abscissa, and each pgint (
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ogy. Webber and Zbilut,for instance, used recurrence plot
analysis to discern between “quiet” and “active” breathing
in laboratory rats, and Kaluzny and TarnéckisedRrps to

© 1998 American Institute of Physics
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FIG. 1. Recurrence plot$a) a sine-wave signal and the corresponding recurrence plotéaadhaotic signal from the Lorenz system and the corresponding
recurrence plots. The shaded plots to the left, known as unthresholded recurren¢erpie)s show the distance relationships between all points in the signal
via a gray-scale map. The black and white plots to the right are called thresholded recurren¢erpptsecause they highlight only those points that fall
within a prescribed distance range.(l, for example, this range of distances, called a threshold corridf®,0s25; in (b) the threshold corridor if0,5.0.

One can see therp patterns in thesTrrs by careful examination of therrp calibration bars for the given threshold corridor values.

study neuronal spike trains in cats. In mathematical probtend, formalize, and systematize recurrence plot analysis in a
lems, RPs have been used primarily to identify transition meaningful way that is based both in theory and experiment
points in nonstationary data sets. Truéital,* for instance, and that targets both quantitative and qualitative properties.
analyzed the dynamics of the logistic equation, varying théAn important consequence of such a formalization is the
driving parameter smoothly and leading the time series bepower that it would lend to th&p as an analysis tool. For
tween chaotic and periodic regimes. They concludedrhat example, knowledge of how periodicity and chaos manifest
analysis compares favorably to classical statistical apen RpPs and how bifurcations affect the geometry and topol-
proaches as a means for analyzing chaotic data, particularlygy of their structure would allow us to use these plots as a
in the detection of bifurcations. Very recently, Casdagli means of determining when a system has, for example,
usedRpPs to characterize time series generated by dynamicahoved from a limit cycle to a chaotic regime. The work
systems driven by slowly varying external forces. described in this paper is a first step towards this type of
Our study of recurrence plots has been motivated by théormalization.
desire to give meaning to the fascinating structures that they While examining severatps of a particular data set, we
exhibit. Previous work in this area is primarily application noticed that their appearances seemed to remain qualitatively
oriented and completely quantitative. We wish, rather, to exunchanged with varying embedding dimension. Figure 2 il-
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FIG. 2. These four thresholded recurrence plots were generated from a data set gathered from an angle sensor on a parametrically driverrpendulum.
(a)—(d) represent embedding dimensions 1-4, respectively, and all four plots have identical threshold corridors and time delay values. Note the striking
structural similarity: the only apparent variation is a lightening of tRe with increasing embedding dimension.

lustrates this for data from an angle sensor on a parametrperimental data set. The standard first step in this procedure
cally driven pendulum. Whemrps of other, unrelated data is to reconstruct the dynamics by embedding the one-
sets also exhibited this type of surprising behavior, the quesdimensional time series imlg-dimensional reconstruction
tion naturally arose as to whether the quantitative aspects @pace using the method of delay coordinates. Given a system
recurrence plots were independent of the embedding dimefvhose topological dimension @, the sampling of a single
sion as well. In this paper, we present a suite of numericaktate variable is equivalent to projecting tedimensional
calculations on simulated and experimental data sets that egnase-space dynamics down onto one axis. Loosely speak-
plore this quest.i(_)n. .Specifically, we demonstrate that the r€ihg, embedding is akin to “unfolding” those dynamics, al-
currence quantification analysiBQA) of Ref. 4 appears not et on different axes. The Takens theorem guarantees that
to dler?enddgn the emllaeidéng ;J\lmlen_slqn |f_fj[he _datafaLe_: relahe reconstructed dynamics, if properly embedded, is equiva-
tive BI/t ow- |men5|(t)nfa d= 2: naﬁ'CgUSt'écfﬁ'or{ 0 _t 'Sf lent to the dynamics of the true, underlying system in the
frgrstlrjwcolrilig cuerlreenr ocus of our eflort an € 1opiC of Agense that their dynamical invariants, such as generalized
9 paper. dimensions and the Lyapunov spectrum, for example, are
These results suggest that recurrence plots are morg .78 : .

. ) identical"® The process of constructing a correct embedding
powerful than was previously believed. In all four of thei the subiect of a larae bodv of literature and NUMErous
studies mentioned in the related work paragraph above, fohP J 9 y
example, the data were first embeddedritf for somedg
=1, using the familiar method of delay coordinateSon-

euristic algorithms and arguments; Abarbanel’s recent text
gives a good summary of this extremely active field. The

trary to current time-series analysis arcana, however, our evPasic problem is to choose two parameters—the delay and
dence suggests thdt need only be equal to one if the data the rgconstructlon-space dlmen.5|on—that guaranteenam
are to be analyzed with RQA. This means that no embeddin§eddingof the data.(Used precisely, the term embedding

need be done. refers to a one-to-one map that also preserves tangent direc-
tions) This process is difficult because, in general, one does

Il. RPs AND RECURRENCE QUANTIFICATION not have prior knowledge af’s correct value; all one has is

ANALYSIS a one-dimensional time series and from this one would like

In this section, we briefly outline some of the basic fea-to learn as much as possible about the system that generated
tures ofRpPs and describe how one generatesreof an ex-  the signal. Given a trajectory in the embedded space, finally,
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one constructs ap by computing the distance between everyany properties of the reconstructed trajectory inferred from

pair of points {;,y;) using an appropriate norm and then this Rp to hold for the underlying system as well. This is, in

shading each pixeli(j) according to that distance. fact, the rationale behind the standard procedure of embed-
ding the data before constructing a recurrence plot.

A. Delay coordinate embedding )
) ) _ _B. Constructing the recurrence plot
To reconstruct the dynamics, one begins with experi-

mental data consisting of a time series: Recurrence plots are based upon the mutual distances
between points on a trajectory, so the first step in their con-
{X1, X2, ... Xn}- struction is to choose a norm. For the work presented

Delay-coordinate reconstruction of the unobserved and podlere, we use the maximum norm, although in one dimension
sibly multi-dimensional phase-space dynamics from thighe maximum norm is, of course, equivalent to the.Euc||dean
single observable is governed by two parameters, embed-P-norm. We chose the maximum norm for ease of implemen-
ding dimensiordg and time delay-. The resultant trajectory tation and because the maximum distance arising in the re-

in RY is currence calculationghe difference between the largest and
smallest measurements in the time sgrissndependent of
{Y1.¥2, - Ym}s embedding dimensiorde for this particular norm. This
wherem=N-(dgz—1)7 and means that we can make direct comparisons betwssn
generated using different valuesay without first having to
Y= (X X 7 Xk 275 - -+ X (dg—1)7) rescale the plots. Using the Euclidean two-norm, on the other

for k=1,2,...,m. Note that usingle="1 merely returns the hand, interpoint distances increase with embedding dimen-

original time series; one-dimensional embedding is equivaSion Simply because length along a new dimension can only
lent to not embedding at all. Proper choicedyf and 7 is contribute to the total distance. It is trlylal to show that dis-
critical to this type of phase-space reconstruction and mud@nceD(yi.y;), as measured by Euclidean p-norm or the
therefore be done wisely: only “correct” values of these two Maximum norm, is nondecreasing with respectdta The
parameters yield embeddings that are guaranteed—by tfoint of using the_ maximum norm was t_o mitigate this effect.
Takens Theorefhand subsequent work by Packaetial” Next, we define theecurrence matrix Aas follows:
and Sauer, Yorke and Casd&gtito be topologically equiva- A(i,j)=D(y;,y)),1=<i,j<m,
lent to the originallunobservejlphase-space dynamics.

There are numerous methods for choosing the embed- D(¥i.¥j)= mMaX [Xii k-1)r=Xj+(k-1)s-
ding dimension and time delay. The formal requirements on 1=k=de
the latter are somewhat less stringentnust be long enough We then generate an unthresholded recurrence plot
so that the reconstructed dynamics are “inflated” off the (UTRP) of the time series by plotting matri& as a contour
main diagonal of the reconstruction spaceih respect to plot (see Fig. 1 Since current recurrence-plot analysis meth-
the floating-point arithmetic system that is involved in theods, including the methods defined in Ref. 4, focus on
calculations—but not so long that points in the embeddedthresholded recurrence plofsrps), the next step is to use
trajectory become uncorrelated. The most widely used apthe UTRP to choose ahreshold corridor [ §,,6,]. This is
proach to estimating such@awhich we follow in this paper, done by first visually examining theTrp in order to find
involves analyzing the data’average mutual information interesting structures, and then using the corresponding val-
function® However, beyond heuristics like average mutualues from theuTRrP colorbar as values fos, and &, thus
information and loose arguments based on finite-precisiofsolating these structuresnteresting structures are those
arithmetic, it is difficult to say whether one value of time whose appearance is best described as being somewhat
delay is “good” or “bad.” The time delay is, of course, continuous—resembling an underlying skeleton for the rest
closely tied to the sampling frequency, in thatan only be  of the uTRP—and that persist for different threshold corri-
equal to integer multiples of the sampling period. Embeddinglors. For simulated data from the Lorenz ands&er sys-
dimensiondg is harder to determine and its effects on thetems, for example, this procedure is relatively easy. How-
reconstructed dynamics are more obvious and apparent. #ver, for other systems in which such structural organization
thedg is too small, projection-induced effects will remain in may not be present we are relegated to the someadhéabc
the reconstructed dynamics, destroying their topological conprocedure of choosing a threshold corridor that represents
jugacy to the true dynamics. One of the most common methsome percentage of the total range of recurrence distances
ods for choosinglg (Ref. 1] is based on the geometry of present in theuTRP. The latter method is what is generally
projection: one adds embedding dimensions, unfolding th&sed in the literature. This choice has sweeping effects on the
dynamics and removinfalse near neighbor§points thatare RP and some interesting implications for “false
close inm-space but not irm+ 1-spaceg recurrences:’® points that appear close because the embed-

If delay-coordinate embedding has been correctly carriediing dimension is too low and not because of the underlying
out, the dynamical invariants of the true and reconstructedynamics.
dynamics are identical, so it is natural to assume tharthe The choice of the width of the threshold corriddj; , 5y |
of a reconstructed trajectory bears at least some similarity tes critical; too large a corridor results in saturation of the
a Rp of the true dynamics. Furthermore, one might expecientire TR—where every pixel is black—while a corridor
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that is too narrow will not be adequately populated withrelation dimension as the slope of the linear region in the
points to support the analyses that follow. Besides being-shaped %recurrence versus corridor width plot. The
critically important, the selection of threshold corridor is alsoRQA, however, stops short of extending the analysis beyond
difficult to systematize in any sensible way. Solutions in thethe simple calculation of the percentage of dark points on the
literature are unsatisfying; Webber and Zbilut, without com-plot. The second RQA statistic is called #eterminism
ment, prescribe a threshold corridor corresponding to th€DET); it measures the percentage of recurrent pointstirmR
lower 10% of the entire distance range present in the correthat are contained in lines parallel to the main diagonal. The
spondinguTrpP. Our procedure, which uses corridor bound- main diagonal itself is excluded from these calculations be-
ary values that isolate “interesting” structures in therp, is ~ cause points there are trivially recurrent. Diagonal lines are
also somewhat unsatisfying, and we are working on develincluded in the analysis if and only if they meet or exceed
oping a better formalization. In the meantime, it is an ad-some prescribed minimum length threshold. Intuitivelgr
equate preliminary approach; for instance, it allowed us taneasures how “organized” @rp is. The third RQA statis-
reproduce the results in Ref. 4, even though that paper ditc, calledentropy is closely related t@ET. Entropy(ENT) is
not specify a threshold corridor. calculated by binning the diagonal lines defined in the pre-
The absolute position of the threshold corridor is anothervious paragraph according to their lengths and using the fol-
important and difficult issue. Our threshold corridor proce-lowing formula:

dure allows us to isolate and examine interesting structures N
across the range of recurrence o_listaneemlike mo_st exist- ENT= — 2 P, log P,
ing TRP approaches, which specify threshold corridors of the k=1

form [0, ]. This is an important advantage, as it allows us 0, hereN is the number of bins and, is the percentage of all

exar?nl'le recurrengehsgructures c_omprlsed of pomts that Alfhes that fall into birk. According to Shannon’s information
not false near neighbore=NNs) in reconstruction space. theory!® predictability decreases with increasing entropy, so

gThe ffpro_ceTs |'Of' unfolding the. attfhaCIOF—mC_ress'ngone would expect low values @NT for TRPs of chaotic data
g—effectively eliminates FNNs, points that are neig OSgets, for example. The fourth RQA statistic, ternmeuEND,

in low-dimensional space due only to projection and not oo~ ;res how quickly @rP “pales” away from the main

the underlying dynamic§) In this way we attempt to avoid diagonal. As the name suggestegND is intended to detect

false recurrences. . - nonstationarity in the data. The fifth and final RQA statistic

Onceihe inreshold cormdornas be(_en chosen, itis used 12 calledpiv and is equal to the reciprocal of the longest line
generate dhresholded recurrence matrix:B length found in the computation afeT, or 1dinep,,,. Eck-

1 if §<D(y;,y})<dn, mann, Kamphorst, and Ruelle claim that line lengthsres

are directly related to the inverse of the largest positive
Lyapunov exponent.Shortline ., values are therefore in-
Finally, the TRP is generated by darkening all pixel,j)  dicative of chaotic behavior. In a purely periodic signal—the
that correspond to nonzero entries in maix opposite extreme—lines tend to be very longpso is very
small.

The ultimate goal of our work is to improve upon exist-
ing methods ofkRP analysis. The lumped statistics of RQA

Perhaps the key mathematical issue in any attempt to ussannot measure much of the qualitative structure of recur-
RPs to analyze experimental data is that of quantifying therence plots; in Fig. 3, for example, we show two structurally
structure that appears in the plots. Truidaal* have devised dissimilarres that are almost identical from the standpoint of
a set of quantifying analyses, collectively called recurrenceRQA. Moreover, different parameter choio@sinimum line
quantification analysi$RQA), to address this problem. The length, corridor, et¢.can have drastic effects e structure
remainder of this section covers the RQA procedure in deand RQA results. It is our goal to devige analysis methods
tail. We view these techniques as the best-formulated angh which these types of structural, qualitative differences are
most-general approach ®p analysis that has been devel- clearly evident and easy to analyze. The ultimate intent of
oped to date. However, its lumped statistical nature meanthis line of research is to refirer analysis techniques to the
that RQA cannot capture many of the spatiotemporal detailpoint where they can be used to gain greater insight into the
of the dynamics. Moreover, it appears that the standard firainderlying signals from which thers were generated.
step in this procedure—that of embedding the data—may be
unnecessary for low-dimensional systems. _ Il EXPERIMENTS AND RESULTS

In order to perform RQA on a data set, one first con-
structs aTtrpP, choosing a threshold corrid¢is, ,5,] as de- One of the more intriguing—and puzzling—
scribed in the previous section, and then uses tk#to  characteristics of recurrence plots of data from low-
compute five statistical values. The first of these statisticsgimensional systems is the structural stability that they ex-
termed %recurrence (REC), is simply the percentage of hibit with increasing embedding dimension. That is,
points on therrp that are darkenef.e., those pairs of points qualitative features that are visible kPs generated using
whose spacing falls within the corridorThis percentage is dg=1 often persist inRPs of the same data embedded in
precisely what is used to compute the correlation dimensiohigher dimensions. This may appear counterintuitive, as the
of a data set—Kaplan and Gla¥sfor instance, define cor- delay-coordinate embedding process is designed to “un-

B(I.))= 0 otherwise.

C. Recurrence quantification analysis
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FIG. 3. RQA results on structurally dissimilares can be almost identical. These two very differemts, one(a) from the R@sler system and ong) a
sine-wave signal of varying period, have equal or near-equal valuescdP.1%) andpeT (42.9% for the Resler data and 45.8% for the varying-period sine
wave). Both TRrs were generated from 5000-measurement time series using an embedding dimension of 1 and a minimum line length of 5.

fold” the underlying dynamics from the one-dimensional aspects of this behavior. First, why does it happen? Recur-
time series. Following this line of reasoning, it might be rence plots exposalistance relationships in the data—
natural to expect that ap of a formally correct reconstruc- relationships that shoul(perhapg change as the dynamics
tion (dg=2d+ 1) would be different fromrps of partially  are unfolded by the embedding process. An obvious ansatz is

unfolded dynamicsdg=1, 2,. .., 2l): that therp structure  that since the time series really is only one-dimensional, per-
would change with embedding dimension until the “cor- haps it makes sense that recurrence patterns present in one-
rect” dg was reached. embeddings capture its essential properties. However, such

However, this is not generally the case, as is clearlyan explanation seems to violate the whole point of the delay-
visible in Fig. 2, which shows recurrence plots generated byoordinate embedding process, wherein thaulti-
chaotic data from a parametrically forced pendulum and hovdimensionalcharacteristics of the dynamics are recovered
those plots change with embedding dimension. This particufrom one-dimensional signals. The second goal of our cur-
lar system, whose dimension is between 2 and 3, was entent research is to work out a formally justifiable and mean-
bedded using the value of time delay as determined by thaagful way to codify the structural characteristics of recur-
first local minimum in the average mutual information func- rence plots. Lumped statistical measures, such as those of
tion, per Ref. 10. Note that the qualitative features of all fourRQA, are a good starting point, but these methods cannot
TRPs are essentially the same; the major difference is theapture the spatiotemporal details of the dynamics. We are
gradual fading of the'RPs asdg increases. This is largely currently investigating various pattern recognition and topo-
due to the fact that an identical threshold corridor was usetbgical analysis techniques—perhaps focusing on the un-
to generate each plot. As noted in Sec. Il B, the distancatable periodic orbits embedded within the chaotic attractors
between any two points on a delay-coordinate reconstructeid the data sets, a set of invariants that can be used to classify
trajectory isnondecreasingvith increasingdg . The thresh- the attracto¥*—in order to develop methods that allow sen-
old corridors in theTrps in Fig. 2 are all of the fornie,r ], sible and useful structural classification and comparison of
wheree is some small numbefWe do not use 0 as the lower RPs.
bound in order to avoid trivial recurrence$he net effect of The experiments reported in the remainder of this sec-
a fixed threshold corridor in the face of increasing embedition explore these issues in the contextgofntitativemea-
ding dimension is that fewer and fewer pairs of points aresures of RP structure. Specifically, we investigate how
recurrent, causing therp to fade. changes in embedding dimension affect the quantitative

The fact that thequalitative features of thes@rps are  features of two low-dimensional systems, as captured by
stable with increasing embedding dimension is highly sugthree of the five RQA statistics. In the first experiment, we
gestive. In fact, we have noticed this strong pattern of simi-duplicate the analyses of Ref. 4—wherein RQA was used to
larity in all of the low-dimensionald=<3) data sets that we detect dynamical variations in a nonstationary time series
have examined and are currently attempting to understanderived from the logistic map, embedded in three
and justify this analytically. Of particular interest are two dimensions—and show that the results are identical if one
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FIG. 4. Using RQA to detect bifurcation&a) the dynamic logistic map time series, plotted versus paraneet&éhe vertical lines are drawn at bifurcation
points of the signal. This is not the standard bifurcation diagram of the logistic map; here, the transients were not allowed tthyiécpuand(d) show
REC, DET, andpiv, respectively, plotted versus parameteusing embedding dimensiaty=3 and time delay-=1. In all three RQA calculations, threshold
corridor was[0,0.0149 and minimum line length was 2. These RQA statistics are clearly effective indicators of the dynamical bifurcations.

usesde=1, 2, 3, or 4. In the second experiment, we perform  In order to show that RQA is an effective method for
a similar RQA analysis on the Lorenz system, again obtaineetecting bifurcations, Trullat al* applied their analyses to
ing similar results for different embedding dimensions. a somewhat different logistic map time series—one in which
the transient behavior was not allowed to die otihey be-
gan with dynamic parametex=2.8 and initial condition
Xo=0.6. After each iteration, they incremented by
0.00 001 up toa=4.0, yielding a nonstationary time series
As mentioned in Sec. IRPs can be used4to detect of 120 001 measurements xf They then embedded the data
changes in the dynamics of a system. Trigleal,” for in- i three-dimensional space with=1, divided the trajectory
;tance, used'embeddlng a_mq RQA tp recognize blfqrcauoniﬁto 11 920epochsof 800 points, in which epochk¢ 1)
n th_e dynamics of the.|OgIStIC equatl.on. In this section, Webegan ten points farther along the original time series than
dupllchate thﬁ(e resulltmt'hqut embgdd!ng the dﬁtaf lowi epochk, and calculateckec and DET for each epoch in the
con;-trjc\tlivoen- nown logistic map is given by the following sequencd.In this formulation, epock overlaps with the last
' 790 points of epochk—1) and with the first 790 points of
Xn+1= aXp(1—Xp) epoch k+1).] Their main conclusion was that these two
for some choice of, which we will call the dynamic param- RQA statistics were better than classical statistical measure-
eter, and some initial conditiax,. When studying this well- ments, such as mean and standard deviation, at distinguish-
known system, one usually fixes the parametend iterates INg between periodicity and chaos.
the map fromx,, discarding the first few hundre@r thou- We repeated this analysis using identical parameters and
sand iterates in order to allow any transient behavior to dieobtained identical resultsndependent of embedding dimen-
out. This map exhibits a variety of periodic and chaotic be-sion The results fodg=3 appear in Fig. 4: parta) shows
haviors for dynamic parameter values between2.8 to 4.0,  the signal itself, whilgb), (c), and(d) give therec, DET, and
and the parameter values at which the bifurcations occur arelv results, respectively, fai=3 and time delayr=1. The
also well known. vertical lines on the figure indicate bifurcation points, as de-

A. Applying RQA to the dynamic logistic map time
series
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FIG. 5. RQA statisticRec, DeT, andbiv computed from the dynamic logistic map data set shown in(padf the previous figure. Individual plots are labeled

with *R, *DT, or *DV, where numbe#* indicates the embedding dimension and R, DT, and DV denote RQA stakstic®ET, DIV, respectively. The
bifurcation points of the time series are indicated by vertical lines on the DT plots. Note how all three statistics pick up bifurcation points equally well,
regardless of embedding dimension

termined by careful examination of the signal. On the whole,This implies that the results and claims in Ref. 4 may not

the RQA statistics pick these bifurcation points up veryreally require embedding the data.

nicely. Where the bifurcation involves a transition between  The logistic map is, of course, fundamentally one-

periodic and chaotic behavior, there are abrupt changes in allimensional, so one might naturally expecty data analysis

three statistics; in the direction from periodicity to chaos,results to be independent di. (Trulla et al,, do not give

REC and DET increase andIiv decreasesand vice versa  any justification for having embedded this time serieRn)

Changes in all three statistics also accompany bifurcation¥he next logical step in exploring the effects of embedding

between different types of periodic orbit—e.g., the two-cycledimension on the qualitative and quantitative structure of

to four-cycle bifurcation nearr=3.48. InDIv, these appear recurrence plots was to run a similar experiment on data

as small spikes, which are somewhat obscured by the scafeom a higher-dimensional system.

and the vertical lines. At the period-doubling bifurcations,

REC drops sharply because points are suddenly not recurre . , . ,

with respect to points on the other branch of the orbit. The%t' Applying RQA to the dynamic Lorenz time series

DET also drops, although not as sharply; the bifurcation leads The results in the previous section suggest that RQA

the dynamics int@notherperiodic regime, where the recur- performed on one-embeddings of time-series data is a useful

rent points are still organized into coherent structures. way to detect bifurcations. In this section, we test this hy-
In order to explore the role that embedding dimensionpothesis further by applying RQA to various embeddings of

plays in RQA, we repeated the same analysis wlifferent  time-series data from the Lorenz system. Specifically, we

embedding dimensions. The results were virtually identicalintegrated the Lorenz equations

Figure 5 illustrates this, showing the same three RQA statis-

X —X
tics for the casesl=1, 2, 3, and 4. The correspondence is | ;rx(x —)xz 1
striking: all three RQA statistics pick up the bifurcation >z/ - xy—)t/)z @)

points just as well whedg=1 as wherdg= 3, as is apparent
from a vertical comparison of the plots in Fig. 5. There arenumerically with fourth-order Runge—Kutta and a timestep
some minor shape differences in the plots, but the bifurcatioof 0.01, holdingo andb fixed (10 and 8/3, respectivelyand
points are equally distinguishable in all four embeddingsvaryingr from 28.0 to 268.0, and used thxevalue as the
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FIG. 6. Dynamic Lorenz time series. This signal was generated from the Lorenz sy$temth fourth-order Runge—Kutta and a timestep of 0.01, by fixing
0=10.0, b=8/3, and incrementing the dynamic parametdérom 28.0 to 268.0 by 0.002 at each integration step.

time series. The-increment was 0.002 per integration step. (mistakenly that the signal is periodic for-values just
The signal is shown in Fig. 6. For this particular range ofgreater than 28. We believe that this anomaly is due in part
parameter values, the behavior of this system is extremelio the fact that the attractor size changes withwhile we
well studied; see, for example, Refs. 15 and 16. As in thaised a single, fixed threshold corridor for the entire signal.
case of the logistic map data of Sec. Il A, this time series igThis anomaly did not arise in the dynamic logistic map
somewhat unusual: it includes some amount of transient beexperiment because the domain of that mg®j$], indepen-
havior at each step. One could, of course, allow the transierdent ofa.) A better experiment might be to adapt the thresh-
to die out each time was incremented before starting to old corridor in accordance with attractor size; we are cur-
gather time series samples. However, part of the point of thisently working out how to do so in a sensible manner. At any
technique is to be able to detect bifurcations as they occur, s@te, it is clear that all foubiv plots are qualitatively quite
an experiment with dynamically changing behavior is an apsimilar.
propriate test case. The recurrence statisti®ec) is a slightly less-effective
The results of RQA on the dynamic Lorenz time seriesbifurcation indicator, but it is still useful, and it too appears
are shown in Fig. 7. The vertical lines on the DT plots iden-to be independent of embedding dimension. The first peri-
tify three of the known periodic windows: 99.524 odic window (aroundr =100 is markedly obvious in Fig. 7
<100.795, 145r<166, andr>214.4. As in the case of (1R), (2R), (3R), and (4R). The second periodic window
the logistic map, thelz=1, 2, 3, and 4 results are similar. (betweenr =145 andr =166) is indicated by a leveling out
The DIv is an effective periodic window indicator: all of Rec, but the third one does not leave a strong, well-
three of the windows correspond to markedly lower valuegelineated signature on these plots. Again, this is probably
for this RQA statistic, as is clearly visible in Fig.(Z1DV), due in large part to the effects of the change in attractor size
(2DV), (3DV), and (4DV). The fluctuation of the values at with parameter. The similarity of the four plots is the main
the beginning of the periodic windows probably stems frompoint we wish to stress here.
the transient nature of the signal; if the transient is slow, the  TheDET results for the dynamic Lorenz signal are shown
dynamics will require some time to reach the attractor. Then Fig. 7 (1DT), (2DT), (3DT), and(4DT). While there is an
flat areas at the very left of theiv plots—which grow obvious similarity between the four plots, thi&DT) results
shorter asdg increases—might also lead one to concludegive a somewhat less-striking indication of the bifurcations



870 Chaos, Vol. 8, No. 4, 1998 J. S. lwanski and E. Bradley

3 - 2
1R 2R 1l
.8 1 8F 1
1DT 2DT LYY
Ar Man,, I” “r M ] 4t 1

0157 015}
1DV 2DV
0 0
’
3R -1 4R
0 0
1 1

30T | S aor s Nasey

.02t
027
3DV 4DV
0 = ; . 0 . ;
28 100 145 214.4 268 28 100 145 2144 268

FIG. 7. RQA statisticgec, DeT, andpiv computed from the dynamic Lorenz data set shown in the previous figure. Individual plots are labeleR VibiT,

or *DV, where numbef* indicates the embedding dimension and R, DT, and DV denote RQA statistic®ET, DIV, respectively. Time delay used was
7=0.1 (10 sample intervals 0.01 eg¢Hollowing Ref. 10. Note how all three statistics pick up bifurcation points equally wefjardless of embedding
dimension

than the other plots do. However, theT indicators are still  IV. SUMMARY
visible and useful. In particular, the first known periodic win-
dow (aroundr =100 is picked up well by all four plots, as The recurrence plot, a two-dimensional representation of
indicated by the spike in the plots et 100. Thedz=2 and a scalar time series that brings out recurrences in a very
higherpeT plots pick out the second known periodic window natural way, has several features that make it a uniquely
(betweenr =145 and 165 much better than thdg=1 cal- powerful time-series analysis technique. It has previously
culations, as indicated by a sharp increase in and leveling oliteen established thars do not require data sets to be sta-
of the DET values in this range. Thdg=1 calculations do tionary. In this paper, we present evidence that recurrence
give some indication of this windo.e., thepeT values do  plots of data from relatively low-dimensionatd€3) sys-
level out in this range tems appear to be, for practical purposes, largely indepen-
Again, these calculations are sensitive to several paramdent of embedding dimension. Specifically, we have demon-
eters, particularly the threshold corridor and the minimumstrated that the recurrence quantification analyRi®A) of
line length. In fact, we have found that the minimum line Trulla et al.* a statistical, quantitativep analysis method,
length parameter can drastically alter the results; when weoes not require that data first be embedded. That is, for the
used a minimum line length of &as opposed to 10 for the purpose of finding bifurcation points in the data sets exam-
calculations shown herethe 1DT result was significantly ined heredz=1 is adequate for computing RQA statistics.
different from the other three. We have not yet worked out aVe showed this by repeating the numerical experiments re-
good way to understand or work around these effects; it iported in Ref. 4, verifying that RQA statistics can detect
important to be careful when choosing parameters for RQAifurcations in a dynamically varying logistic-map time se-
and to run experiments using several different values. ries, and then we demonstrated that those results do not ac-
The obvious next step, on which we are currently work-tually depend on embedding dimension. We then extended
ing, is to perform RQA analyses on dynamic data sets fronthis analysis to the Lorenz system, reinforcing the hypothesis
systems whose known dimension is greater than three. Simihatde=1 RQA results are sufficient and that one need not
lar results on such a data set would further strengthen owrmbed time-series data before performing RQA.
hypothesis that in order to perform RQA on a data set one Qualitativefeatures oRPs also appear to remain largely
neednot first perform any delay-coordinate embedding. unchanged with varying embedding dimension. Rms of
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experimental data from a driven pendulum, for instance, exease of the Lorenz data set, we used several different values
hibit only a slight lightening with increasing embedding of time delay and compared the results, obtaining similar
dimension—a secondary effect of the norms involved. Thevalues for all, and then chose one={0.1) in the middle of
ultimate goal of this line of research is to understand thighe range to use for the analyses and plots in this paper.
invariance ofrp structure and work out useful, formalized Finally, recall that one-embeddings do not depend in any
analysis methods that can be used to study that structureiay uponr, so the fact that thdg=1 RQA results are good
Purely guantitative analyses like RQA are a good first stefbifurcation indicators strongly supports our main hypothesis.
along this path, but because of their lumped statistical nature, The evidence presented in this paper to support the hy-
they cannot capture the details of the spatiotemporal dynanpothesis that aspects af structure are independent of em-
ics of a time series. The structural analysis tools that we hopbedding dimension is highly suggestive, but certainly not
to develop, which will be based in theory and verified in definitive, and further verification and study are desperately
experiment, will allow one to systematically and reliably needed. The motivation is obvious; it is not only interesting
classify the qualitative structure of these intriguing plots. Inbut also important to determine when, why, and how
particular, we are focusing on methods that exploit pattermecurrence-plot analysis can avoid the considerable difficul-
recognition techniques to identify and classify the topologi-ties and often-hazy heuristics that inform the delay-
cal features oRps. A useful focus for such methods is the setcoordinate embedding process. Of course, the difficulties that
of unstable periodic orbit§UPO9 embedded within a cha- are inherent to recurrence-plot analysis itself will remain, but
otic attractor, a set of dynamical invariants that can be usethe overall data analysis process will have been simplified
to classify such an attractdt. Preliminary results suggest significantly.

that the set of UPOs does indeed form a basis for the gross
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