P1 Let T_n be a recurrence defined as follows:

$$T_0 = 1, \ T_{n+1} = (n + 1) + \frac{1}{2}T_n, \ n \in \mathbb{N}.$$

We wish to prove that $T_n \geq 2n + 1$ for all $n \in \mathbb{N}$.

Proof: Proof is by weak induction on n.

Base Case:

(Write down and verify base case)

Ind. Hyp.

(Write down the statement of the ind. hyp.)

Proof of Ind. Hyp.

(prove the ind. hyp.)

P2 Let $F_n, \ n \geq 0$ be the Fibonacci series. **Theorem:** For all $n \in \mathbb{N}$, \[\sum_{j=0}^{n} F_j = F_{n+2} - 1. \]

Proof: Proof is by **weak induction** on n.

Base Case:

(Write down and verify base case)

Ind. Hyp.

(Write down the statement of the ind. hyp.)

1
P3 Let F_n, $n \geq 0$ be the Fibonacci series.

Theorem: For all $n \in \mathbb{N}$, if $n \geq 2$ then $F_n \geq 1.2^n$.

Proof: Proof is by **strong induction** on n.

Base Case: (Write down and verify base case)

Ind. Hyp. (Write down the statement of the ind. hyp.)

Proof of Ind. Hyp. (prove the ind. hyp.)