Speech and Language Processing

Chapter 9 of SLP
Automatic Speech Recognition (II)
Outline for ASR

- ASR Architecture
 - The Noisy Channel Model
- Five easy pieces of an ASR system
 1) Language Model
 2) Lexicon/Pronunciation Model (HMM)
 3) Feature Extraction
 4) Acoustic Model
 5) Decoder
- Training
- Evaluation
Acoustic Modeling
(= Phone detection)

- Given a 39-dimensional vector corresponding to the observation of one frame o_i
- And given a phone q we want to detect
- Compute $p(o_i|q)$
- Most popular method:
 - GMM (Gaussian mixture models)
- Other methods
 - Neural nets, CRFs, SVM, etc
Problem: how to apply HMM model to continuous observations?

- We have assumed that the output alphabet V has a finite number of symbols
- But spectral feature vectors are real-valued!
- How to deal with real-valued features?
 - Decoding: Given o_t, how to compute $P(o_t|q)$
 - Learning: How to modify EM to deal with real-valued features
Vector Quantization

- Create a training set of feature vectors
- Cluster them into a small number of classes
- Represent each class by a discrete symbol
- For each class \(v_k \), we can compute the probability that it is generated by a given HMM state using Baum-Welch as above
We’ll define a

- Codebook, which lists for each symbol
- A prototype vector, or codeword

If we had 256 classes (‘8-bit VQ’),

- A codebook with 256 prototype vectors
- Given an incoming feature vector, we compare it to each of the 256 prototype vectors
- We pick whichever one is closest (by some ‘distance metric’)
- And replace the input vector by the index of this prototype vector
VQ requirements

- **A distance metric or distortion metric**
 - Specifies how similar two vectors are
 - Used:
 - to build clusters
 - To find prototype vector for cluster
 - And to compare incoming vector to prototypes

- **A clustering algorithm**
 - K-means, etc.
Distance metrics

- Simplest:
 - (square of) Euclidean distance
 \[d^2(x, y) = \sum_{i=1}^{D} (x_i - y_i)^2 \]
 - Also called ‘sum-squared error’
Distance metrics

- More sophisticated:
 - (square of) Mahalanobis distance
 - Assume that each dimension of feature vector has variance σ^2

$$d^2(x, y) = \sum_{i=1}^{D} \frac{(x_i - y_i)^2}{\sigma_i^2}$$

- Equation above assumes diagonal covariance matrix; more on this later
Training a VQ system (generating codebook): K-means clustering

1. Initialization
 choose M vectors from L training vectors (typically $M=2^B$)
 as initial code words... random or max. distance.

2. Search:
 for each training vector, find the closest code word,
 assign this training vector to that cell

3. Centroid Update:
 for each cell, compute centroid of that cell. The new code word is the centroid.

4. Repeat (2)-(3) until average distance falls below threshold (or no change)
Vector Quantization

• Example

Given data points, split into 4 codebook vectors with initial values at (2,2), (4,6), (6,5), and (8,8)
Vector Quantization

- *Example*

compute centroids of each codebook, re-compute nearest neighbor, re-compute centroids...
Vector Quantization

- Example

Once there’s no more change, the feature space will be partitioned into 4 regions. Any input feature can be classified as belonging to one of the 4 regions. The entire codebook can be specified by the 4 centroid points.
Summary: VQ

- To compute $p(o_t|q_j)$
 - Compute distance between feature vector o_t
 - and each codeword (prototype vector)
 - in a preclustered codebook
 - where distance is either
 - Euclidean
 - Mahalanobis
 - Choose the vector that is the closest to o_t
 - and take its codeword v_k
 - And then look up the likelihood of v_k given HMM state j in the B matrix
 - $B_j(o_t) = b_j(v_k)$ s.t. v_k is codeword of closest vector to o_t
 - Using Baum-Welch as above
Computing $b_j(v_k)$

- $b_j(v_k) = \frac{\text{number of vectors with codebook index } k \text{ in state } j}{\text{number of vectors in state } j} = \frac{14}{56} = \frac{1}{4}$
Summary: VQ

- **Training:**
 - Do VQ and then use Baum-Welch to assign probabilities to each symbol

- **Decoding:**
 - Do VQ and then use the symbol probabilities in decoding
Directly Modeling Continuous Observations

- Gaussians
 - Univariate Gaussians
 - Baum-Welch for univariate Gaussians
 - Multivariate Gaussians
 - Baum-Welch for multivariate Gaussians
 - Gaussian Mixture Models (GMMs)
 - Baum-Welch for GMMs
Better than VQ

- VQ is insufficient for real ASR
- Instead: Assume the possible values of the observation feature vector o_t are normally distributed.
- Represent the observation likelihood function $b_j(o_t)$ as a Gaussian with mean μ_j and variance σ_j^2

$$f(x | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$
Gaussians are parameters by mean and variance
Reminder: means and variances

- For a discrete random variable X
- Mean is the expected value of X
 - Weighted sum over the values of X
 \[
 \mu = E(X) = \sum_{i=1}^{N} p(X_i)X_i
 \]

- \[
 \sigma^2 = E(X_i - E(X))^2 = \sum_{i=1}^{N} p(X_i)(X_i - E(X))^2
 \]
Gaussian as Probability Density Function

P(shaded region) = 0.341
Gaussian PDFs

- A Gaussian is a probability density function; probability is area under curve.
- To make it a probability, we constrain area under curve = 1.
- BUT...
 - We will be using “point estimates”; value of Gaussian at point.
- Technically these are not probabilities, since a pdf gives a probability over a interval, needs to be multiplied by dx
- As we will see later, this is ok since same value is omitted from all Gaussians, so argmax is still correct.
A Gaussian is parameterized by a mean and a variance:

- \(P(o|q) \):
 - \(P(o|q) \) is highest here at mean
 - \(P(o|q) \) is low here, very far from mean

\(P(o|q) \) is the probability density function of a Gaussian distribution, where \(o \) is the observation and \(q \) is the parameter of the distribution. Gaussians are widely used in acoustic modeling for their ability to model continuous data.
Using a (univariate Gaussian) as an acoustic likelihood estimator

- Let’s suppose our observation was a single real-valued feature (instead of 39D vector)
- Then if we had learned a Gaussian over the distribution of values of this feature
- We could compute the likelihood of any given observation \(o_t \) as follows:

\[
b_j(o_t) = \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp \left(-\frac{(o_t - \mu_j)^2}{2\sigma_j^2} \right)
\]
A (single) Gaussian is characterized by a mean and a variance.

Imagine that we had some training data in which each state was labeled.

We could just compute the mean and variance from the data:

\[
\mu_i = \frac{1}{T} \sum_{t=1}^{T} o_t \quad \text{s.t. } o_t \text{ is state } i
\]

\[
\sigma_i^2 = \frac{1}{T} \sum_{t=1}^{T} (o_t - \mu_i)^2 \quad \text{s.t. } o_t \text{ is state } i
\]
Training Univariate Gaussians

- But we don’t know which observation was produced by which state!
- What we want: to assign each observation vector o_t to every possible state i, prorated by the probability the the HMM was in state i at time t.
- The probability of being in state i at time t is $\xi_t(i)$!!

\[
\overline{\mu}_i = \frac{\sum_{t=1}^{T} \xi_t(i) o_t}{\sum_{t=1}^{T} \xi_t(i)}
\]
\[
\overline{\sigma}^2_i = \frac{\sum_{t=1}^{T} \xi_t(i) (o_t - \mu_i)^2}{\sum_{t=1}^{T} \xi_t(i)}
\]
Multivariate Gaussians

- Instead of a single mean μ and variance σ:
 \[f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) \]

- Vector of means μ and covariance matrix Σ:
 \[f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right) \]
Multivariate Gaussians

- Defining μ and Σ

$$\mu = E(x)$$

$$\Sigma = E[(x - \mu)(x - \mu)^T]$$

- So the i-jth element of Σ is:

$$\sigma_{ij}^2 = E[(x_i - \mu_i)(x_j - \mu_j)]$$
Gaussian Intuitions: Size of Σ

- $\mu = [0 \ 0]$
- $\Sigma = I$
- $\Sigma = 0.6I$
- $\Sigma = 2I$

- As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed.
O_1 and O_2 are uncorrelated – knowing O_1 tells you nothing about O_2.

O_1 and O_2 can be uncorrelated without having equal variances.
- Different variances in different dimensions
Gaussian Intuitions: Off-diagonal

- As we increase the off-diagonal entries, more correlation between value of x and value of y

\[\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix} \]
Gaussian Intuitions: off-diagonal

As we increase the off-diagonal entries, more correlation between value of x and value of y.

\[
\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}
\]
Gaussian Intuitions: off-diagonal and diagonal

- Decreasing non-diagonal entries (#1-2)
- Increasing variance of one dimension in diagonal (#3)

\[
\Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 3 & 0.8 \\ 0.8 & 1 \end{bmatrix}
\]
In two dimensions

O_1 and O_2 are correlated – knowing O_1 tells you something about O_2
But: assume diagonal covariance

- I.e., assume that the features in the feature vector are uncorrelated
- This isn’t true for FFT features, but is true for MFCC features, as we will see.
- Computation and storage much cheaper if diagonal covariance.
- I.e. only diagonal entries are non-zero
- Diagonal contains the variance of each dimension σ_{ii}^2
- So this means we consider the variance of each acoustic feature (dimension) separately
Diagonal covariance

- Diagonal contains the variance of each dimension σ_{ii}^2
- So this means we consider the variance of each acoustic feature (dimension) separately

$$f(x | \mu, \sigma) = \prod_{d=1}^{D} \frac{1}{\sigma_j \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{x_d - \mu_d}{\sigma_d} \right)^2 \right)$$

$$f(x | \mu, \sigma) = \frac{1}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_d^2} \exp \left(-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_d - \mu_d}{\sigma_d^2} \right)^2 \right)$$
Baum-Welch reestimation equations for multivariate Gaussians

- Natural extension of univariate case, where now μ_i is mean vector for state i:

$$
\bar{\mu}_i = \frac{\sum_{t=1}^{T} \xi_t(i) o_t}{\sum_{t=1}^{T} \xi_t(i)}
$$

$$
\bar{\Sigma}_i = \frac{\sum_{t=1}^{T} \xi_t(i) (o_t - \mu_i)(o_t - \mu_i)^T}{\sum_{t=1}^{T} \xi_t(i)}
$$
But we’re not there yet

- Single Gaussian may do a bad job of modeling distribution in any dimension:

- Solution: Mixtures of Gaussians

7/30/08

Figure from Chen, Picheney et al slides
Mixtures of Gaussians

- **M** mixtures of Gaussians:
 \[
 f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} N(x, \mu_{jk}, \Sigma_{jk})
 \]

- For diagonal covariance:
 \[
 b_j(o_t) = \sum_{k=1}^{M} c_{jk} N(o_t, \mu_{jk}, \Sigma_{jk})
 \]

 \[
 b_j(o_t) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_{jkd}^{2}} \exp\left(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^2}{\sigma_{jkd}^2}\right)
 \]
GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Either
 - M Covariance Matrices of $D \times D$
 - Or more likely
 - M Diagonal Covariance Matrices of $D \times D$
 - which is equivalent to
 - M Variance Vectors of dimensionality D
Where we are

- Given: A wave file
- Goal: output a string of words
- What we know: the **acoustic model**
 - How to turn the wavefile into a sequence of acoustic feature vectors, one every 10 ms
 - If we had a complete phonetic labeling of the training set, we know how to train a gaussian “phone detector” for each phone.
 - We also know how to represent each word as a sequence of phones
- What we knew from Chapter 4: **the language model**
- Next:
 - Seeing all this back in the context of HMMs
 - Search: how to combine the language model and the acoustic model to produce a sequence of words
Decoding

- In principle:

\[\hat{W} = \arg\max_{W \in \mathcal{L}} \text{likelihood} \frac{P(O|W)}{P(W)} \text{ prior} \]

- In practice:

\[\hat{W} = \arg\max_{W \in \mathcal{L}} P(O|W)P(W)^{LMSF} \]

\[\hat{W} = \arg\max_{W \in \mathcal{L}} P(O|W)P(W)^{LMSF} WIP^N \]

\[\hat{W} = \arg\max_{W \in \mathcal{L}} \log P(O|W) + LMSF \times \log P(W) + N \times \log WIP \]
Why is ASR decoding hard?

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]
HMMs for speech

\[Q = q_1 q_2 \ldots q_N \] a set of states corresponding to subphones

\[A = a_{01} a_{02} \ldots a_{n1} \ldots a_{nn} \] a transition probability matrix \(A \), each \(a_{ij} \) representing the probability for each subphone of taking a self-loop or going to the next subphone. Together, \(Q \) and \(A \) implement a pronunciation lexicon, an HMM state graph structure for each word that the system is capable of recognizing.

\[B = b_i(o_t) \] A set of observation likelihoods, also called emission probabilities, each expressing the probability of a cepstral feature vector (observation \(o_t \)) being generated from subphone state \(i \).
HMM for digit recognition task

Lexicon

<table>
<thead>
<tr>
<th>Digit</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>w ah n</td>
</tr>
<tr>
<td>two</td>
<td>t uw</td>
</tr>
<tr>
<td>three</td>
<td>th r ly</td>
</tr>
<tr>
<td>four</td>
<td>f ao r</td>
</tr>
<tr>
<td>five</td>
<td>f ay v</td>
</tr>
<tr>
<td>six</td>
<td>s ih ks</td>
</tr>
<tr>
<td>seven</td>
<td>s eh v ax n</td>
</tr>
<tr>
<td>eight</td>
<td>ey t</td>
</tr>
<tr>
<td>nine</td>
<td>n ay n</td>
</tr>
<tr>
<td>zero</td>
<td>z ly r ow</td>
</tr>
<tr>
<td>oh</td>
<td>ow</td>
</tr>
</tbody>
</table>

Phone HMM

Start

p("one")

p("two")

p("zero")

p("oh")

End
The Evaluation (forward) problem for speech

- The observation sequence O is a series of MFCC vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate $P(O|W)$
- Intuition: how likely is the input to have been generated by just that word string W
Evaluation for speech: Summing over all different paths!

- f ay ay ay ay v v v v
- f f ay ay ay ay v v v
- f f f f ay ay ay ay v
- f f ay ay ay ay ay ay ay v
- f f ay ay ay ay ay ay ay ay ay v
- f f ay v v v v v v v
- f f ay v v v v v v v v
The forward lattice for “five”
The forward trellis for “five”

<table>
<thead>
<tr>
<th>V</th>
<th>0</th>
<th>0</th>
<th>0.008</th>
<th>0.0093</th>
<th>0.0114</th>
<th>0.00703</th>
<th>0.00345</th>
<th>0.00306</th>
<th>0.00206</th>
<th>0.00117</th>
</tr>
</thead>
<tbody>
<tr>
<td>AY</td>
<td>0</td>
<td>0.04</td>
<td>0.054</td>
<td>0.0664</td>
<td>0.0355</td>
<td>0.016</td>
<td>0.00676</td>
<td>0.000532</td>
<td>0.000109</td>
<td>0.000109</td>
</tr>
<tr>
<td>F</td>
<td>0.8</td>
<td>0.32</td>
<td>0.112</td>
<td>0.0224</td>
<td>0.00448</td>
<td>0.000896</td>
<td>0.000179</td>
<td>4.48e-05</td>
<td>1.12e-05</td>
<td>2.8e-06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>f</td>
<td>0.8</td>
<td>f</td>
<td>0.8</td>
<td>f</td>
<td>0.7</td>
<td>f</td>
<td>0.4</td>
<td>f</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>ay</td>
<td>0.1</td>
<td>ay</td>
<td>0.1</td>
<td>ay</td>
<td>0.3</td>
<td>ay</td>
<td>0.8</td>
<td>ay</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>0.6</td>
<td>v</td>
<td>0.6</td>
<td>v</td>
<td>0.4</td>
<td>v</td>
<td>0.3</td>
<td>v</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.4</td>
<td>p</td>
<td>0.4</td>
<td>p</td>
<td>0.2</td>
<td>p</td>
<td>0.1</td>
<td>p</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>iy</td>
<td>0.1</td>
<td>iy</td>
<td>0.1</td>
<td>iy</td>
<td>0.3</td>
<td>iy</td>
<td>0.6</td>
<td>iy</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Viterbi trellis for “five”
Viterbi trellis for “five”

<table>
<thead>
<tr>
<th>Time</th>
<th>V</th>
<th>AY</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.008</td>
<td>f 0.8 ay 0.1 p 0.4 iy 0.1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.04</td>
<td>0.048</td>
<td>f 0.8 ay 0.1 p 0.4 iy 0.1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.32</td>
<td>0.112</td>
<td>f 0.7 ay 0.3 p 0.2 iy 0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.0072</td>
<td>0.048</td>
<td>0.0269</td>
<td>f 0.4 ay 0.8 p 0.1 iy 0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.00672</td>
<td>0.0224</td>
<td>0.0125</td>
<td>f 0.4 ay 0.8 p 0.1 iy 0.6</td>
</tr>
<tr>
<td>6</td>
<td>0.00403</td>
<td>0.00448</td>
<td>0.000896</td>
<td>f 0.4 ay 0.8 p 0.1 iy 0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.00188</td>
<td>0.00538</td>
<td>0.000179</td>
<td>f 0.4 ay 0.8 p 0.1 iy 0.6</td>
</tr>
<tr>
<td>8</td>
<td>0.00161</td>
<td>0.00167</td>
<td>4.48e-05</td>
<td>f 0.5 ay 0.6 p 0.1 iy 0.5</td>
</tr>
<tr>
<td>9</td>
<td>0.000667</td>
<td>0.000428</td>
<td>1.12e-05</td>
<td>f 0.5 ay 0.6 p 0.1 iy 0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.000493</td>
<td>8.78e-05</td>
<td>2.8e-06</td>
<td>f 0.5 ay 0.6 p 0.1 iy 0.5</td>
</tr>
</tbody>
</table>
Search space with bigrams
Viterbi trellis

\[\begin{align*}
q_0 & \quad \cdots \quad \cdots \quad \cdots \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \\
w_1 & \\
\vdots & \\
w_2 & \\
\vdots & \\
w_N & \\
\vdots & \\
q_c & \quad \cdots \quad \cdots \quad \cdots \\
\end{align*} \]

\[P(w_N | w_1) \]

\[P(w_2 | w_1) \]

\[P(w_1 | w_1) \]
Viterbi backtrace
Evaluation

- How to evaluate the word string output by a speech recognizer?
Word Error Rate

- Word Error Rate =
 \[\frac{100 \times (\text{Insertions} + \text{Substitutions} + \text{Deletions})}{\text{Total Word in Correct Transcript}} \]

Alignment example:

REF: portable **** PHONE UPSTAIRS last night so
HYP: portable FORM OF STORES last night so
Eval I S S
WER = 100 \left(\frac{1+2+0}{6}\right) = 50\%
NIST sctk-1.3 scoring software:
Computing WER with sclite

- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)
Scores: (#C #S #D #I) 9 3 1 2
REF: was an engineer SO I i was always with **** **** MEN UM and they
HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they
Eval: D S I I S S
Sclite output for error analysis

<table>
<thead>
<tr>
<th>CONFUSION PAIRS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(972)</td>
</tr>
<tr>
<td>With >= 1 occurances</td>
<td>(972)</td>
</tr>
</tbody>
</table>

1: 6 -> (%hesitation) ==> on
2: 6 -> the ==> that
3: 5 -> but ==> that
4: 4 -> a ==> the
5: 4 -> four ==> for
6: 4 -> in ==> and
7: 4 -> there ==> that
8: 3 -> (%hesitation) ==> and
9: 3 -> (%hesitation) ==> the
10: 3 -> (a-) ==> i
11: 3 -> and ==> i
12: 3 -> and ==> in
13: 3 -> are ==> there
14: 3 -> as ==> is
15: 3 -> have ==> that
16: 3 -> is ==> this
Sclite output for error analysis

17: 3 -> it ==> that
18: 3 -> mouse ==> most
19: 3 -> was ==> is
20: 3 -> was ==> this
21: 3 -> you ==> we
22: 2 -> (%hesitation) ==> it
23: 2 -> (%hesitation) ==> that
24: 2 -> (%hesitation) ==> to
25: 2 -> (%hesitation) ==> yeah
26: 2 -> a ==> all
27: 2 -> a ==> know
28: 2 -> a ==> you
29: 2 -> along ==> well
30: 2 -> and ==> it
31: 2 -> and ==> we
32: 2 -> and ==> you
33: 2 -> are ==> i
34: 2 -> are ==> were
Better metrics than WER?

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on
 - Has been applied in dialogue systems, where desired semantic output is more clear
Training
Reminder: Forward-Backward Algorithm

1) Initialize $\Phi=(A,B)$
2) Compute α, β, ξ
3) Estimate new $\Phi'=(A,B)$
4) Replace Φ with Φ'
5) If not converged go to 2
The Learning Problem: It’s not just Baum-Welch

- Network structure of HMM is always created by hand
 - no algorithm for double-induction of optimal structure and probabilities has been able to beat simple hand-built structures.
- Always Bakis network = links go forward in time
- Subcase of Bakis net: beads-on-string net:

 Baum-Welch only guaranteed to return local max, rather than global optimum
Complete Embedded Training

- Setting all the parameters in an ASR system
- Given:
 - training set: wavefiles & word transcripts for each sentence
 - Hand-built HMM lexicon
- Uses:
 - Baum-Welch algorithm
By analogy with ξ earlier, let’s define the probability of being in state j at time t with the k^{th} mixture component accounting for o_t:

$$\xi_{tm}(j) = \frac{\sum_{i=1}^{N} \alpha_{t-1}(j) a_{ij} c_{jm} b_{jm}(o_t) \beta_j(t)}{\alpha_F(T)}$$

Now,

$$\overline{\mu}_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j) o_t}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tk}(j)}$$

$$\overline{c}_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tk}(j)}$$

$$\Sigma_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j)(o_t - \mu_j)(o_t - \mu_j)^T}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tm}(j)}$$
How to train mixtures?

- Choose M (often 16; or can tune M dependent on amount of training observations)
- Then can do various splitting or clustering algorithms
- One simple method for “splitting”:
 1) Compute global mean μ and global variance
 2) Split into two Gaussians, with means $\mu \pm \epsilon$ (sometimes ϵ is 0.2σ)
 3) Run Forward-Backward to retrain
 4) Go to 2 until we have 16 mixtures
Embedded Training

- Components of a speech recognizer:
 - Feature extraction: not statistical
 - Language model: word transition probabilities, trained on some other corpus
 - Acoustic model:
 - Pronunciation lexicon: the HMM structure for each word, built by hand
 - Observation likelihoods \(b_j(ot) \)
 - Transition probabilities \(a_{ij} \)
Embedded training of acoustic model

- If we had hand-segmented and hand-labeled training data
- With word and phone boundaries
- We could just compute the
 - B: means and variances of all our triphone gaussians
 - A: transition probabilities
- And we’d be done!
- But we don’t have word and phone boundaries, nor phone labeling
Embedded training

- Instead:
 - We’ll train each phone HMM embedded in an entire sentence
 - We’ll do word/phone segmentation and alignment automatically as part of training process
Embedded Training

Transcription

Nine four oh two two

Lexicon

one wah n
two tuw
three thr iy
... ...
eight ey t
nine n ay n
zero z i y r ow
oh ow

Wavefile

Feature Extraction

n ay n f ao r ow t uw t uw

Raw HMM

Feature Vectors
 Initialization: “Flat start”

- Transition probabilities:
 - set to zero any that you want to be “structurally zero”
 - The γ probability computation includes previous value of a_{ij}, so if it’s zero it will never change
 - Set the rest to identical values

- Likelihoods:
 - initialize μ and σ of each state to global mean and variance of all training data
Embedded Training

- Now we have estimates for A and B
- So we just run the EM algorithm
- During each iteration, we compute forward and backward probabilities
- Use them to re-estimate A and B
- Run EM til converge
Viterbi training

- Baum-Welch training says:
 - We need to know what state we were in, to accumulate counts of a given output symbol o_t
 - We’ll compute $\xi_i(t)$, the probability of being in state i at time t, by using forward-backward to sum over all possible paths that might have been in state i and output o_t.

- Viterbi training says:
 - Instead of summing over all possible paths, just take the single most likely path
 - Use the Viterbi algorithm to compute this “Viterbi” path
 - Via “forced alignment”
Forced Alignment

- Computing the “Viterbi path” over the training data is called “forced alignment”
- Because we know which word string to assign to each observation sequence.
- We just don’t know the state sequence.
- So we use a_{ij} to constrain the path to go through the correct words
- And otherwise do normal Viterbi
- Result: state sequence!
Viterbi training equations

- **Viterbi**

 \[
 \hat{a}_{ij} = \frac{n_{ij}}{n_i}
 \]

 For all pairs of emitting states, \(1 \leq i, j \leq N\)

- **Baum-Welch**

 \[
 \hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \gamma_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \gamma_t(i, j)}
 \]

 \[
 \hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} s.t. O_t = v_k}{\sum_{t=1}^{T} \xi_j(t)}
 \]

 Where \(n_{ij}\) is number of frames with transition from \(i\) to \(j\) in best path

 And \(n_j\) is number of frames where state \(j\) is occupied
Viterbi Training

- Much faster than Baum-Welch
- But doesn’t work quite as well
- But the tradeoff is often worth it.
Viterbi training (II)

- Equations for non-mixture Gaussians

\[
\overline{\mu}_i = \frac{1}{N_i} \sum_{t=1}^{T} o_t \quad \text{s.t. } q_t = i
\]

\[
\overline{\sigma}_i^2 = \frac{1}{N_i} \sum_{t=1}^{T} (o_t - \mu_i)^2 \quad \text{s.t. } q_t = i
\]

- Viterbi training for mixture Gaussians is more complex, generally just assign each observation to 1 mixture
Log domain

- In practice, do all computation in log domain
- Avoids underflow
 - Instead of multiplying lots of very small probabilities, we add numbers that are not so small.
- Single multivariate Gaussian (diagonal Σ) compute:

$$b_j(o_t) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi\sigma^2_{jd}}} \exp \left(-\frac{1}{2} \frac{(o_{td} - \mu_{jd})^2}{\sigma^2_{jd}} \right)$$

- In log space:

$$\log b_j(o_t) = -\frac{1}{2} \sum_{d=1}^{D} \left[\log(2\pi) + \sigma^2_{jd} + \frac{(o_{td} - \mu_{jd})^2}{\sigma^2_{jd}} \right]$$
Log domain

- Repeating:
 \[
 \log b_j(o_t) = -\frac{1}{2} \sum_{d=1}^{D} \left[\log(2\pi) + \sigma_{jd}^2 + \frac{(o_{td} - \mu_{jd})^2}{\sigma_{jd}^2} \right]
 \]

- With some rearrangement:
 \[
 \log b_j(o_t) = C - \frac{1}{2} \sum_{d=1}^{D} \frac{(o_{td} - \mu_{jd})^2}{\sigma_{jd}^2}
 \]
 \[
 C = -\frac{1}{2} \sum_{d=1}^{D} \left(\log(2\pi) + \sigma_{jd}^2 \right)
 \]

- Where:
 - Note that this looks like a weighted Mahalanobis distance!!!
 - Also may justify why we these aren’t really probabilities (point estimates); these are really just distances.
Summary: Acoustic Modeling for LVCSR.

- Increasingly sophisticated models
- For each state:
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of Multivariate Gaussians
- Where a state is progressively:
 - CI Phone
 - CI Subphone (3ish per phone)
 - CD phone (=triphones)
 - State-tying of CD phone
- Forward-Backward Training
- Viterbi training
Summary: ASR Architecture

- Five easy pieces: ASR Noisy Channel architecture
 1) Feature Extraction:
 39 “MFCC” features
 2) Acoustic Model:
 Gaussians for computing $p(o|q)$
 3) Lexicon/Pronunciation Model
 • HMM: what phones can follow each other
 4) Language Model
 • N-grams for computing $p(w_i|w_{i-1})$
 5) Decoder
 • Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech!
Summary

- ASR Architecture
 - The Noisy Channel Model
- Five easy pieces of an ASR system
 1) Language Model
 2) Lexicon/Pronunciation Model (HMM)
 3) Feature Extraction
 4) Acoustic Model
 5) Decoder
- Training
- Evaluation