CSCI 5832
Natural Language Processing

Jim Martin
Lecture 20

Today 4/3

- Finish semantics
 - Dealing with quantifiers
 - Dealing with ambiguity
- Lexical Semantics
 - Wordnet
 - WSD

Every Restaurant Closed

\[
\forall x \text{ Restaurant}(x) \implies \exists c \text{ Closed}(c) \land \text{ClosedThing}(c,x)
\]

\[
\lambda x \forall x \text{ Restaurant}(x) \implies Q(x) \quad \lambda x \exists c \text{ Closed}(c) \land \text{ClosedThing}(c,x)
\]

\[
\lambda x, \lambda Q, \lambda P(x) = Q(x) \land \forall x \text{ Restaurant}(x)
\]

\[
\lambda x, \forall \text{ Every restaurant}
\]
Problem

• Every restaurant has a menu.

\(\forall s \text{ Restaurant}(s) \rightarrow \exists y (\text{Menu}(y) \land \exists e (\text{Having}(e) \land \text{Haver}(e, x) \land \text{Had}(e, y)))\)

\(\exists y \text{ Menu}(y) \land \forall x (\text{Restaurant}(x) \Rightarrow \exists e (\text{Having}(e) \land \text{Haver}(e, x) \land \text{Had}(e, y)))\)

Problem

• The current approach just gives us 1 interpretation.
 • Which one we get is based on the order in which the quantifiers are added into the representation.
 • But the syntax doesn’t really say much about that so it shouldn’t be driving the placement of the quantifiers
 - It should focus on the argument structure mostly

What We Really Want

\(\exists e \text{ Having}(e) \land \text{Haver}(e, x) \land \text{Had}(e, y)\)

\(\forall s \text{ Restaurant}(s) \rightarrow Q(s)\)

\(\exists y \text{ Menu}(y) \land Q(x)\)
Store and Retrieve

Now given a representation like that we can get all the meanings out that we want by

- Retrieving the quantifiers one at a time and placing them in front.
- The order determines the scoping (the meaning).

Store

The Store.

\[\exists e \text{ Having}(e) \land \text{Have}(e, s_1) \land \text{Had}(e, s_2) \]
\[(\lambda Q \exists s \text{ Restaurant}(x) \Rightarrow Q(x), 1), \]
\[(\lambda Q \exists x \text{ Menu}(x) \land Q(x), 2) \]

Retrieve

Use lambda reduction to retrieve from the store incorporate the arguments in the right way.

- Retrieve element from the store and apply it to the core representation
- With the variable corresponding to the retrieved element as a lambda variable
- Huh?
Retrieve

• Example pull out 2 first (that’s s2).

\[\lambda Q. \exists x \left(\text{Mem}(x) \land Q(x) \right) \]

\[(\lambda s_2. \exists e \text{Having}(e) \land \text{Haver}(e, s_1) \land \text{Had}(e, s_2)) \]

Retrieve

Break

• CAETE students...
 • Quizzes have been turned in to CAETE for distribution back to you.
 • Next in-class quiz is 4/17.
 • That’s 4/24 for you
WordNet

- WordNet is a database of facts about words
 - Meanings and the relations among them
 - www.cogsci.princeton.edu/~wn
- Currently about 100,000 nouns, 11,000 verbs, 20,000 adjectives, and 4,000 adverbs
- Arranged in separate files (DBs)

WordNet Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Also Called</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>Subordinate</td>
<td>From concepts to superordinates</td>
<td>breakfast → meal</td>
</tr>
<tr>
<td>Instance</td>
<td>Instance</td>
<td>From concepts to instances</td>
<td>meal → lunch</td>
</tr>
<tr>
<td>Member-Member</td>
<td>Member-Member</td>
<td>From members to their members</td>
<td>faculty → professor</td>
</tr>
<tr>
<td>Part-Member</td>
<td>Has-Part</td>
<td>From wholes to parts</td>
<td>table → leg</td>
</tr>
<tr>
<td>Substance-Member</td>
<td>Part-Of</td>
<td>From substances to parts</td>
<td>content → novel</td>
</tr>
<tr>
<td>Substance-Substance</td>
<td>Member-Of</td>
<td>From substances to substances</td>
<td>water → oxygen</td>
</tr>
<tr>
<td>Antonym</td>
<td></td>
<td>Semantic opposition between lemmas</td>
<td>leader → follower</td>
</tr>
<tr>
<td>Synonym</td>
<td>Related Synonym</td>
<td>Lemmas with a morphological root</td>
<td>destruction → destroy</td>
</tr>
</tbody>
</table>

- Quiz review
Inside Words

- Paradigmatic relations connect lexemes together in particular ways but don’t say anything about what the meaning representation of a particular lexeme should consist of.
- That’s what I mean by inside word meanings.

Inside Words

- Various approaches have been followed to describe the semantics of lexemes. We’ll look at only a few...
 - Thematic roles in predicate-bearing lexemes
 - Selection restrictions on thematic roles
 - Decompositional semantics of predicates
 - Feature-structures for nouns
Inside Words

• Thematic roles: more on the stuff that goes on inside verbs.
 • Thematic roles are semantic generalizations over the specific roles that occur with specific verbs.
 • I.e. Takers, givers, eaters, makers, doers, killers, all have something in common
 • -er
 • They're all the agents of the actions
 • We can generalize across other roles as well to come up with a small finite set of such roles

Thematic Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The water spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The wind blows debris from the mall onto our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The French government has built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>Mona asked “You met Mary Ann at a supermarket?”</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>He turned to poaching catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>

Thematic Roles

• Takes some of the work away from the verbs.
 • It's not the case that every verb is unique and has to completely specify how all of its arguments uniquely behave.
 • Provides a locus for organizing semantic processing
 • It permits us to distinguish near surface-level semantics from deeper semantics
Linking

- Thematic roles, syntactic categories and their positions in larger syntactic structures are all intertwined in complicated ways. For example...
 - AGENTS are often subjects
 - In a VP->V NP NP rule, the first NP is often a GOAL and the second a THEME

Resources

- There are 2 major English resources out there with thematic-role-like data
 - PropBank
 - Layered on the Penn TreeBank
 - Small number (25ish) labels
 - FrameNet
 - Based on a theory of semantics known as frame semantics.
 - Large number of frame-specific labels

Deeper Semantics

- From the WSJ...
 - He melted her reserve with a husky-voiced paean to her eyes.
 - If we label the constituents He and her reserve as the Melter and Melted, then those labels lose any meaning they might have had.
 - If we make them Agent and Theme then we don’t have the same problems
Problems

• What exactly is a role?
• What’s the right set of roles?
• Are such roles universals?
• Are these roles atomic?
 • I.e. Agents
 • Animate, Volitional, Direct causers, etc
• Can we automatically label syntactic constituents with thematic roles?

Selection Restrictions

• Last time
 • I want to eat someplace near campus
 • Using thematic roles we can now say that eat is a predicate that has an AGENT and a THEME
 • What else?
 • And that the AGENT must be capable of eating and the THEME must be something typically capable of being eaten

As Logical Statements

• For eat…
 • Eating(e) · Agent(e,x) · Theme(e,y) · Food(y)
 (adding in all the right quantifiers and lambdas)
Use WordNet hyponyms (type) to encode the selection restrictions.

Sense 1
beefburger, beefburger --
(a fried cake of minced beef served on a bun)
 ⇒ sandwich
 ⇒ snack food
 ⇒ dish
 ⇒ nourishment, nourishment, nutrition...
 ⇒ food, nutrient
 ⇒ substance
 ⇒ matter
 ⇒ physical entity
 ⇒ entity

Specificity of Restrictions

Consider the verbs imagine, lift and diagonalize in the following examples:
- To diagonalize a matrix is to find its eigenvalues
- Atlantis lifted Galileo from the pad
- Imagine a tennis game
- What can you say about THEME in each with respect to the verb?
- Some will be high up in the WordNet hierarchy, others not so high...

Problems

Unfortunately, verbs are polysemous and language is creative... WSJ examples...
- ... ate glass on an empty stomach accompanied only by water and tea
- you can't eat gold for lunch if you're hungry
- ... get it to try to eat Afghanistan
Solutions

- Eat glass
 - Not really a problem. It is actually about an eating event
- Eat gold
 - Also about eating, and the can’t creates a scope that permits the THEME to not be edible
- Eat Afghanistan
 - This is harder, its not really about eating at all

Discovering the Restrictions

- Instead of hand-coding the restrictions for each verb, can we discover a verb’s restrictions by using a corpus and WordNet?
 1. Parse sentences and find heads
 2. Label the thematic roles
 3. Collect statistics on the co-occurrence of particular headwords with particular thematic roles
 4. Use the WordNet hypernym structure to find the most meaningful level to use as a restriction

Motivation

- Find the lowest (most specific) common ancestor that covers a significant number of the examples
WSD and Selection Restrictions

- Word sense disambiguation refers to the process of selecting the right sense for a word from among the senses that the word is known to have.
- Semantic selection restrictions can be used to disambiguate:
 - Ambiguous arguments to unambiguous predicates
 - Ambiguous predicates with unambiguous arguments
 - Ambiguity all around

WSD and Selection Restrictions

- Ambiguous arguments
 - Prepare a dish
 - Wash a dish
- Ambiguous predicates
 - Serve Denver
 - Serve breakfast
- Both
 - Serves vegetarian dishes

WSD and Selection Restrictions

- This approach is complementary to the compositional analysis approach.
 - You need a parse tree and some form of predicate-argument analysis derived from:
 - The tree and its attachments
 - All the word senses coming up from the lexemes at the leaves of the tree
 - Ill-formed analyses are eliminated by noting any selection restriction violations
Problems

- As we saw last time, selection restrictions are violated all the time.
- This doesn’t mean that the sentences are ill-formed or preferred less than others.
- This approach needs some way of categorizing and dealing with the various ways that restrictions can be violated.

Supervised ML Approaches

- That’s too hard… try something empirical
- In supervised machine learning approaches, a training corpus of words tagged in context with their sense is used to train a classifier that can tag words in new text (that reflects the training text).

WSD Tags

- What’s a tag?
 - A dictionary sense?
- For example, for WordNet an instance of “bass” in a text has 8 possible tags or labels (bass1 through bass8).
WordNet Bass

The noun "bass" has 8 senses in WordNet

1. bass - (the lowest part of the musical range)
2. bass, bass part - (the lowest part in polyphonic music)
3. bass, basso - (an adult male singer with the lowest voice)
4. sea bass, bass - (fish of lean-fleshed saltwater fish of the family Serranidae)
5. freshwater bass, bass - (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
6. bass, bass voice, basso - (the lowest adult male singing voice)
7. bass - (the member with the lowest range of a family of musical instruments)
8. bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Representations

- Most supervised ML approaches require a very simple representation for the input training data.
 - Vectors of sets of feature/value pairs
 - I.e. files of comma-separated values
- So our first task is to extract training data from a corpus with respect to a particular instance of a target word
 - This typically consists of a characterization of the window of text surrounding the target

Representations

- This is where ML and NLP intersect
 - If you stick to trivial surface features that are easy to extract from a text, then most of the work is in the ML system
 - If you decide to use features that require more analysis (say parse trees) then the ML part may be doing less work (relatively) if these features are truly informative
Surface Representations

• Collocational and co-occurrence information
 • Collocational
 ▪ Encode features about the words that appear in specific positions to the right and left of the target word
 ▪ Often limited to the words themselves as well as they’re part of speech
 • Co-occurrence
 ▪ Features characterizing the words that occur anywhere in the window regardless of position
 ▪ Typically limited to frequency counts

Examples

• Example text (WSJ)
 • An electric guitar and bass player stand off to one side not really part of the scene, just as a sort of nod to gringo expectations perhaps
 • Assume a window of +/- 2 from the target
Collocational

- Position-specific information about the words in the window
 - guitar and bass player stand
 - [guitar, NN, and, CJC, player, NN, stand, VVB]
 - In other words, a vector consisting of
 - [position n word, position n part-of-speech…]
Classifiers

• Once we cast the WSD problem as a classification problem, then all sorts of techniques are possible
 • Naive Bayes (the right thing to try first)
 • Decision lists
 • Decision trees
 • MaxEnt
 • Support vector machines
 • Nearest neighbor methods

Classifiers

• The choice of technique, in part, depends on the set of features that have been used
 • Some techniques work better/worse with features with numerical values
 • Some techniques work better/worse with features that have large numbers of possible values
 • For example, the feature the word to the left has a fairly large number of possible values

Naïve Bayes

• Argmax P(sense|feature vector)
• Rewriting with Bayes and assuming independence of the features
Naïve Bayes

- \(P(s) \) ... just the prior of that sense.
- Just as with part of speech tagging, not all senses will occur with equal frequency
- \(P(v_j|s) \) ... conditional probability of some particular feature/value combination given a particular sense
- You can get both of these from a tagged corpus with the features encoded

Naïve Bayes Test

- On a corpus of examples of uses of the word line, naïve Bayes achieved about 73% correct
- Good?

Decision Lists

- Another popular method...

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish within window</td>
<td>bass1</td>
</tr>
<tr>
<td>striped bass</td>
<td>bass1</td>
</tr>
<tr>
<td>guitar within window</td>
<td>bass2</td>
</tr>
<tr>
<td>bass player</td>
<td>bass1</td>
</tr>
<tr>
<td>piano within window</td>
<td>bass1</td>
</tr>
<tr>
<td>train within window</td>
<td>bass3</td>
</tr>
<tr>
<td>sea bass</td>
<td>bass1</td>
</tr>
<tr>
<td>play/"bass"</td>
<td>bass1</td>
</tr>
<tr>
<td>river within window</td>
<td>bass1</td>
</tr>
<tr>
<td>viola within window</td>
<td>bass1</td>
</tr>
<tr>
<td>salmon within window</td>
<td>bass1</td>
</tr>
<tr>
<td>on bass</td>
<td>bass1</td>
</tr>
<tr>
<td>bass are</td>
<td>bass1</td>
</tr>
</tbody>
</table>
Learning DLs

- Restrict the lists to rules that test a single feature (1-dl rules)
- Evaluate each possible test and rank them based on how well they work.
- Glue the top-N tests together and call that your decision list.

Yarowsky

- On a binary (homonymy) distinction used the following metric to rank the tests

\[
\frac{\text{correct}}{\text{correct} + \text{false positives}}
\]

- This gives about 95% on this test...
- Is this better than the 73% on line we noted earlier?

Bootstrapping

- What if you don’t have enough data to train a system...
- Bootstrap
 - Pick a word that you as an analyst think will co-occur with your target word in particular sense
 - Grep through your corpus for your target word and the hypothesized word
 - Assume that the target tag is the right one
Bootstrapping

- For bass
 - Assume play occurs with the music sense and fish occurs with the fish sense

Bass Results

We need more good teachers — right now, there are only a half a dozen who can play the free bass with ease.

An electric guitar and bass player stood off to one side, not really part of the scene, just as a sort of nod to going expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of Fame, honored this latter night nearb Detroit, Harry Goodman, Mr. Goodman’s brother and bass player at the original concert, will be in the audience with other family members.

The rhythm section said the words spread part of the life cycle in such folk as Pacific salmon and striped bass and Pacific rockfish or snapper.

And it all started when fishermen declined the striped bass in Lake Michigan were too skinny.

Though still a far cry from the lake’s record 53-pound bass of a decade ago, “you could fill these bowls again, and that made people very, very happy,” Mr. Pushon says.

Bootstrapping

- Perhaps better
 - Use the little training data you have to train an inadequate system
 - Use that system to tag new data.
 - Use that larger set of training data to train a new system
Problems

- Given these general ML approaches, how many classifiers do I need to perform WSD robustly
 - One for each ambiguous word in the language
- How do you decide what set of tags/labels/senses to use for a given word?
 - Depends on the application

WordNet Bass

- Tagging with this set of senses is an impossibly hard task that’s probably overkill for any realistic application

1. bass - (the lowest part of the musical range)
2. bass, bass part - (the lowest part in polyphonic music)
3. bass, basso - (an adult male singer with the lowest voice)
4. sea bass, bass - (fish of lean-fleshed saltwater fish of the family Serranidae)
5. freshwater bass, bass - (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
6. bass, bass voice, basso - (the lowest adult male singing voice)
7. bass - (the member with the lowest range of a family of musical instruments)
8. bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Next Time

- On to Chapter 22 (Information Extraction)