Today 3/13

• Statistical Parsing
Probabilistic CFGs

- The probabilistic model
 - Assigning probabilities to parse trees
 - Getting the probabilities for the model
- Parsing with probabilities
 - Slight modification to dynamic programming approach
 - Task is to find the max probability tree for an input

Basic Probability Model

- A derivation (tree) consists of the bag of grammar rules that are in the tree
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

\[P(T,S) = \prod_{\text{node } t} P(\text{rule}(t)) \]

Probability Model (1.1)

- The probability of a word sequence (sentence) is the probability of its tree in the unambiguous case.
- It’s the sum of the probabilities of the trees in the ambiguous case.
- Since we can use the probability of the tree(s) as a proxy for the probability of the sentence...
 - PCFGs give us an alternative to N-Gram models as a kind of language model.
Getting the Probabilities

• From an annotated database (a treebank)
 • So for example, to get the probability for a particular VP rule just count all the times the rule is used and divide by the number of VPs overall.

\[
P(\alpha \rightarrow \beta | \alpha) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\sum \text{Count}(\alpha \rightarrow \gamma)} = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)}
\]

Prob CKY

• Alter CKY so that the probabilities of constituents are stored on the way up...
 • Probability of a new constituent A derived from the rule A -> BC is:
 • \(P(\alpha \rightarrow B C) * P(B) * P(C) \)
 • Where P(B) and P(C) are already in the table
 • But what we store is the MAX probability over all the A rules.

```cpp
function Probabilistic-CKY(terminal; grammar) returns most probate parse and its probability
for j = 1 to LENGTH(terminal) do
  for all \( | A \rightarrow \text{word}(j) \in \text{grammar} \) do
    table[j-1, j, A] = P(A) -> word(j)
for i = j - 1 to j + 1 do
  for all \( | A \rightarrow BC \in \text{grammar} \)
    and \( \text{table}[i, j, A] > 0 \) and \( \text{table}[i, j, C] > 0 \)
    if \( \text{table}[i, j, A] = \text{table}[i, j, A] \times \text{table}[i, j, B] \times \text{table}[i, j, C] \) then
      table[i, j, A] = P(A) -> BC x table[i, j, B] x table[i, j, C]
return BUILD-TREE(0, 1, LENGTH=terminal, S), table[1, 1, LENGTH=terminal, S]
```
Problems with PCFGs

• The probability model we’re using is just based on the rules in the derivation…
 • Doesn’t use the words in any real way
 • Doesn’t take into account where in the derivation a rule is used
 • Doesn’t really work
 • Most probable parse isn’t usually the right one (the one in the treebank test set).

Solution 1

• Add lexical dependencies to the scheme…
 • Infiltrate the predilections of particular words into the probabilities in the derivation
 • I.e. Condition the rule probabilities on the actual words

Heads

• To do that we’re going to make use of the notion of the head of a phrase
 • The head of an NP is its noun
 • The head of a VP is its verb
 • The head of a PP is its preposition
 (It’s really more complicated than that but this will do.)
Example (right)

Attribute grammar

Example (wrong)

How?

• We used to have
 • VP -> V NP PP P(rule|VP)
 • That’s the count of this rule divided by the number of VPs in a treebank
 • Now we have
 • VP(dumped) -> V(dumped) NP(sacks)PP(into)
 • P(r|VP ^ dumped is the verb ^ sacks is the head of the NP ^ into is the head of the PP)
 • Not likely to have significant counts in any treebank
Declare Independence

• When stuck, exploit independence and collect the statistics you can...
• We’ll focus on capturing two things
 • Verb subcategorization
 • Particular verbs have affinities for particular VPs
 • Objects affinities for their predicates (mostly their mothers and grandmothers)
 • Some objects fit better with some predicates than others

Subcategorization

• Condition particular VP rules on their head... so $15: \text{VP} \rightarrow \text{V NP PP} \ \text{P}(r|\text{VP})$
 Becomes
 $\text{P}(r_{15} | \text{VP} \ ^\wedge \text{dumped})$
 What’s the count?
 How many times was this rule used with dump, divided by the number of VPs that dump appears in total

Preferences

• Verb subcategorization captures the affinity between VP heads (verbs) and the VP rules they go with.
 • That is the affinity between a node and one of its daughter nodes.
 • What about the affinity between VP heads and the heads of the other daughters of the VP
 • Back to our examples...
Example (right)

Example (wrong)

Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize.
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.
Preferences (2)

- Consider the VPs
 - Ate spaghetti with gusto
 - Ate spaghetti with marinara
- Here the heads of the PPs are the same (with) so that won’t help.
- But the affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate (we hope).

Preferences (2)

- Note the relationship here is more distant and doesn’t involve a headword since gusto and marinara aren’t the heads of the PPs.

Note

- In case someone hasn’t pointed this out yet, this lexicalization stuff is a thinly veiled attempt to incorporate semantics into the syntactic parsing process…
- Duhh… Picking the right parse requires the use of semantics.
Break

- Quiz
 - Chapter 12: 12.1 through 12.6
 - CFGs, Major English phrase types, problems with CFGs, relation to finite-state methods
 - Chapter 13: All except 13.4.3
 - CKY, Earley, partial parsing, sequence labeling
 - Chapter 14: 14.1 through 14.6.1
 - Basic prob CFG model, getting the counts, prob CKY, problems with the model, lexicalization, and grammar rewriting
- Bring a cheat sheet.

Rule Rewriting

- An alternative to using these kinds of probabilistic lexical dependencies is to rewrite the grammar so that the rules do capture the regularities we want.
- By splitting and merging the non-terminals in the grammar.
- Example: split NPs into different classes...

NPs

- Our CFG rules for NPs don’t condition on where the rule is applied (they’re context-free remember)
- But we know that not all the rules occur with equal frequency in all contexts.

<table>
<thead>
<tr>
<th></th>
<th>Pronoun</th>
<th>Non-Pronoun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>Object</td>
<td>34%</td>
<td>66%</td>
</tr>
</tbody>
</table>
Other Examples

• Lots of other examples like this in the TreeBank
 • Many at the part of speech level
 • Recall that many decisions made in annotation efforts are directed towards improving annotator agreement, not towards doing the right thing.
 • Often this involves conflating distinct classes into a larger class
 • TO, IN, Det, etc.

Rule Rewriting

• Three approaches
 • Use linguistic intuitions to directly rewrite rules
 • NP_Obj and the NP_Subj approach
 • Automatically rewrite the rules using context to capture some of what we want
 • I.e. Incorporate context into a context-free approach
 • Search through the space of rewrites for the grammar that maximizes the probability of the training set

Local Context Approach

• Condition the rules based on their parent nodes
 • This splitting based on tree-context captures some of the linguistic intuitions
• Now we have non-terminals NP^S and NP^VP that should capture the subject/object and pronoun/full NP cases.

• Recall what’s going on here. We’re in effect rewriting the treebank, thus rewriting the grammar.
• And changing the probabilities since they’re being derived from different counts…
 • And if we’re splitting what’s happening to the counts?

• If this is such a good idea we may as well apply a learning approach to it.
• Start with a grammar (perhaps a treebank grammar)
• Search through the space of splits/merges for the grammar that in some sense maximizes parsing performance on the training/development set.
Auto Rewriting

- Basic idea...
 - Split every non-terminal into two new non-terminals across the entire grammar (X becomes X1 and X2).
 - Duplicate all the rules of the grammar that use X, dividing the probability mass of the original rule almost equally.
 - Run EM to readjust the rule probabilities.
 - Perform a merge step to back off the splits that look like they don’t really do any good.

Last Point

- Statistical parsers are getting quite good, but it’s still quite silly to expect them to come up with the correct parse given only statistically massage syntactic information.
- But it’s not so crazy to think that they can come up with the right parse among the top-N parses.
- Lots of current work on
 - Re-ranking to make the top-N list even better.

Evaluation

- So it’s unreasonable to expect these probabilistic parsers to get the right answer what can we expect from them and how do we measure it.
- Look at the content of the trees rather than the entire trees.
 - Assuming that we have gold standard trees for test sentences
Evaluation

- **Precision**
 - What fraction of the sub-trees in our parse matched corresponding sub-trees in the reference answer
 - How much of what we’re producing is right?

- **Recall**
 - What fraction of the sub-trees in the reference answer did we actually get?
 - How much of what we should have gotten did we get?

evaluation

- **Crossing brackets**

 ![Diagram of parser hypothesis and reference answer with crossing brackets]

Example